一、HMM中的第三个基本问题
参数估计问题:给定一个观察序列 O=O1O2…OT ,如何调节模型 μ=(A,B,π) 的参数,使得 P(O|μ) 最大化:
argmaxμP(Otraining|μ)
模型的参数是指构成 μ 的 πi,aij,bj(k) 。本文的前序两节讲的EM算法就是为了解决模型参数的最大化问题。其基本思想是,初始时随机地给模型参数赋值,该赋值遵循模型对参数的限制,例如,从某一状态出发的所有转移概率之和为1.给模型参数赋初值后,得到模型 μ0 , 然后根据 μ0 可以得到模型中隐变量的期望值。例如,从 μ0 得到某一状态到另一状态的期望次数,用期望次数来替代实际次数,这样可以得到模型参数的重新估计值,由此得到新的模型 μ1 。然后重复上述过程,直到参数收敛于最大似然估计值。
二、算法介绍
给定HMM的参数 μ 和观察序列 O=O1O2…OT 在时间 t 位于状态
ξt(i,j)=P(qt=