推荐系统从零到一
文章平均质量分 80
最近负责推荐系统从无到有的搭建工作, 包括算法,工程,大数据等一系列知识。此专栏作为一个系统性的总结与分享,旨在给需要推荐系统的同行一个参考。
_Kevin_Duan_
这个作者很懒,什么都没留下…
展开
-
DeepFM调参总结
一、结论使用id类特征效果很好,很重要dropout对模型性能影响较大dnn层数对模型性能影响大同样数据特征的情况下,deepfm比lr在AUC(ROC)的效果好0.02~0.03只使用id类特征(用户id,物品id)比使用全部特征(包含用户id,物品id)的AUC值差0.005左右,但是训练速度和预测速度大幅度提升。二、应用场景2.1 指标选择应用deepfm和lr模型的目的是给召回阶段的候选集合排序,故选择AUC为模型离线评测的指标。同时关注loss的变化情况。2.2 数据情况原创 2021-07-09 16:40:54 · 1720 阅读 · 0 评论 -
ABTest系统调研和需求
一、AB测试的必要性1.1 算法评估线下可以使用离线的AUC,NDCG等指标进行算法模型的评估,算法上线后怎样进行算法间的评估,上线的算法是好是坏,好多少?坏多少?要有效评估算法,必须借助AB测试工具。1.2 方向指导在算法上线后,往往伴随着特征的增减,怎样能够确定特征对于算法模型影响?算法进行AB测试过程中通过线上指标,能够确定特征对于核心指标的影响情况。1.3 提升效率新算法上线后,如果没有AB,就根本不能知道这个算法的效果是怎样的。导致达到目标的时间周期变长,效率低下。1.4 总结.原创 2021-01-30 15:02:22 · 1250 阅读 · 0 评论 -
信息流推荐多样性
信息流推荐多样性一、问题现状信息流产品中一个常见的问题是多样性越来越差,造成这种问题的原因在于机器学习算法本身。下面通过一副系统循环图来介绍多样性差的问题。资讯库随机推荐文章,由于是按照全库比例采样,娱乐占比较大,随机推荐给用户的娱乐资讯偏多。用户点击娱乐的概率变大,算法根据用户的反馈,会更加倾向于给用户推荐娱乐类的新闻。在选资讯入库时,由于娱乐文章的曝光大,ctr置信度高,算法会...原创 2019-12-03 21:17:19 · 854 阅读 · 0 评论 -
推荐系统整体框架概览
推荐系统整体框架概览 推荐系统整体架构 推荐系统的核心组成部分离线核心节点服务UI 总结 推荐系统整体架构先说点题外话,最近在看的书中讲到了怎么进行自学的方法,分了十个层级。第一个便是要了解所学内容的概况,也就是轮廓,大的东西是什么,方向是什么。所以,专栏的主要内容就是推荐系统,那么首先来看看推荐系统的整体架构是什么。先来一张图: 推荐系统的核心组成部分这里把推荐系统分为以下重要的组成...原创 2018-10-18 20:00:25 · 1702 阅读 · 0 评论 -
搭建推荐系统所需要的材料
搭建推荐系统所需要的材料人力物力推荐系统的原材料物品流量最后人力物力在上一小节中《推荐系统的必要性》里已经讨论过一个推荐业务团队需要哪些人员储备,需要什么核心技术等。这里在重点说下物力,即机器资源设备。往往从头开始搭建这样一个团队,的确是比较花时间,金钱,人工的。第一,人员的招聘是一个很难的工作,从JD的发出,简历的筛选,电话沟通,预约面试,一面,二面,终面,约定入职时间等等。这都是需要很...原创 2018-10-13 11:06:19 · 972 阅读 · 0 评论 -
推荐系统的必要性
推荐系统的必要性引言回顾你需要推荐系统吗?怎么做?引言回顾在专栏文章的引言中,我们讨论了推荐和推荐系统,以及推荐系统的应用。这里我感觉有必要再通俗地介绍下推荐系统。我们所存在的世界是不断发展的,发展是靠着越来越多的连接来进行的。从最原始的物物交换,到今天世界各国建立贸易关系,都是为了自身的发展。同样的,推荐系统的目的就是要建立物品和人之间的关系,把物品推荐给人。比较恰当的例子就是微博营销,他通...原创 2018-10-11 20:02:46 · 7427 阅读 · 0 评论 -
引言
推荐系统从0到1_引言什么是推荐?什么是推荐系统?推荐系统的应用什么是推荐?说起推荐,就不得不说搜索。搜索这里指信息检索,在大量的信息中,我们需要找到自己需要的信息,就用到了搜索引擎,它帮助我们更快地找到有价值的信息。如google,baidu等等,还有其他专业的信息检索网站,如我常用的DBLP https://dblp.uni-trier.de/ 等等。搜索是人们主动去搜索自己需要的信息,...原创 2018-10-09 19:43:15 · 529 阅读 · 0 评论 -
推荐系统从0到1_1
推荐系统从0到1_1目录结构引言推荐系统的必要性搭建推荐系统所需要的材料推荐系统整体框架概览推荐系统核心技术框架数据预处理EE问题和相关算法TopN推荐CF算法原理介绍和实现基于用户行为的个性化推荐Word2Vec介绍和应用用户行为与item的向量化用户行为与物品之间的相似CTR预估离线排序模型FFMWide and Deep 算法根据用户实时行为进行推荐ABTest框架和实现Item的实时曝光控...原创 2018-10-09 06:52:11 · 617 阅读 · 0 评论