由上节我们得出的一个引理:
引理 在共轭方向算法中, 对于所有的
k,0≤k≤n−1,0≤i≤k
都有 :
g(k+1)Td(i)=0
由上可知: g(k+1) 正交于由向量 d(0),d(1),…,d(k) 张成的子空间中的任意向量。该引理可用于证明共轭方向法的一个很有意思的最优性性质。可以证明 f(x(k+1)) 不仅能够满足 f(x(k+1))=minαf(x(k)+αd(k)) ,而且还能满足
f(x(k+1))=minα0,α1,…,αkf(x(0)+∑i=0kαid(i))
换言之,如果记:
νk=x(0)+span[d(0),d(1),…,d(k)]
则有 f(x(k+1))=minx∈νkf(x) .随着 k 的增大,子空间
定义矩阵
D(k)
为:
D(k)=[d(0),d(1),…,d(k)]
其中, d(i) 为矩阵 D(k) 的第 i 列。注意,
x(k+1)=x(0)+∑i=0kαid(i)=x(0)+D(k)α
其中, α=[α0,α1,…,αk]T . 因此,
x(k+1)∈x(0)+R(D(k))=νk
对于任意向量 x∈νk , 存在一个向量 a ,使得 x=x(0)+D(k)a .令 ϕk(a)=f(x(0)+D(k)a) 可知 ϕk(a) 是一个二次型函数,具有唯一的极小点。由链式法则可得:
Dϕk(a)=∇f(x(0)+D(k)a)D(k)
带入 α 可得:
Dϕk(α)=∇f(x(0)+D(k)α)TD(k)=∇f(x(k+1))TD(k)=g(k+1)TD(k)
由定理可知, g(k+1)TD(k)=0T . 因此, α 能够满足函数 ϕk 的局部极小点的一阶必要条件,是 ϕk 的极小点,即:
f(x(k+1))=minaf(x(0)+D(k)a)=minx∈νkf(x)
扩张子空间定理证明完成。
共轭方向法的计算效率很高,但是,前提是必须能够给定一组 Q 共轭方向。幸运的是,存在一种方法,能够随着迭代进行, 逐一产生 Q 共轭方向,无需提前指定。