【3D目标检测】常见相关指标说明

一、mAP指标

mean Average Precision(平均精度均值),它是目标检测和信息检索等任务中的重要性能指标。mAP 通过综合考虑精度和召回率来衡量模型的总体性能。

1.1 精度(Precision)

表示检索到的目标中实际为正确目标的比例,计算公式为

1.2 召回率(Recall)

表示所有目标中成功被检索到的比例,计算公式为

1.3 平均精度(AP)

  • 平均精度表示的是在不同的召回率阈值下,计算模型的平均精度。通常通过绘制 PR 曲线(Precision-Recall 曲线)计算。

  • PR 曲线的横轴为召回率,纵轴为精度AP 是 PR 曲线下的面积,即对该曲线进行积分的结果。

1.4 mAP的计算

  • mAP 是对多个类别的 AP 求平均得出的数值。

  • 如果目标检测任务中包含 N 个类别,则计算每个类别的 AP,并对所有类别的 AP 取平均,即:\mathrm{mAP}=\frac{\sum_{i=1}^N\mathrm{AP}_i}{N}

1.5 mAP在2D目标检测的计算

在目标检测中,通常设定一个置信度阈值,用于判定检测结果是否被认为是正例(即预测的目标)。常见的阈值有0.5,即 IOU(交并比)≥ 0.5 被视为有效检测。

比如mAP@0.5表示将IoU设为0.5时,计算每一类的所有图片的AP,然后所有类别求平均得到mAP;

mAP@.5:.95表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP。

def ap_per_class(tp, conf, pred_cls, target_cls, eps=1e-16):
    i = np.argso
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值