3D目标检测中常见的评价指标

1. mAP(Mean Average Precision

        mAP可翻译为平均精确度(average precision)的平均(mean)也称全类平均精度。通俗来说AP是指在某一类别的检索结果中,通过计算Precision-Recall曲线下面积得到的值。(Recall为横轴,Precision为纵轴)。mAP是对多个类别的AP值的平均。

检测精度或查准率(Precision)

  • 定义:在所有被模型预测为正类的样本中,真正类的比例。
  • 计算公式Precision = \frac{TP}{TP+FP}
  • ​ 其中,TP(True Positives)是真正类,FP(False Positives)是假正类。
  • 反映内容:精度反映了模型预测的正类样本中有多少是正确的,衡量了模型的准确性。如果精度高,说明模型的误检率低,即错误地将负类预测为正类的情况较少。

召回率或查全率(Recall)

  • 定义:在所有真实为正类的样本中,被模型正确预测为正类的比例。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值