在本教程中,我们将使用Keras库来实现物体识别任务,并使用VGG(Visual Geometry Group)模型进行图像分类。VGG是一个非常流行的卷积神经网络模型,由Karen Simonyan和Andrew Zisserman于2014年提出。该模型在ImageNet图像分类挑战中取得了出色的成绩。
首先,我们需要安装Keras和相关依赖项。确保你已经安装了Python和pip,并运行以下命令来安装Keras:
pip install keras
接下来,我们将使用Keras中的内置函数从Keras应用程序模块中加载VGG16模型。VGG16是VGG系列中的一个预训练模型,它包含16个卷积层和3个全连接层。
from keras.applications.vgg16 import VGG16
model = VGG16(weights=<