变分问题边值问题的导出

曲面表面积泛函定解问题

定义在 Ω = [ 0 , 1 ] × [ 0 , 1 ] \Omega=[0,1]\times[0,1] Ω=[0,1]×[0,1] 区域上的光滑曲面 v ( x , y ) v(x,y) v(x,y),在边界取值为0. 那么(1)请写出泛函 J ( v ) J(v) J(v),用于表示该曲面的表面积,并给出其允许函数类 M M M,从而使得泛函有定义。(2)若 u ∈ C 2 ( Ω ‾ ) u\in C^2(\overline{\Omega}) uC2(Ω),请求解出与 J ( u ) = m i n M J ( v ) J(u)=min_{M}J(v) J(u)=minMJ(v)等价的偏微分方程定解问题。(3)请给出这个定解问题的解。

解:

(1) 首先,我们需要写出表示曲面 v ( x , y ) v(x,y) v(x,y)表面积的泛函 J ( v ) J(v) J(v)。曲面的表面积可以通过如下积分给出:

J ( v ) = ∫ Ω 1 + ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2   d x   d y J(v) = \int_{\Omega} \sqrt{1 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2} \, dx\,dy J(v)=Ω1+(xv)2+(yv)2 dxdy

允许函数类 M M M可以定义为:

M = { v ∈ H 1 ( Ω )   ∣   v ∣ ∂ Ω = 0 } M = \{v \in H^1(\Omega) \,|\, v|_{\partial\Omega} = 0\} M={vH1(Ω)vΩ=0}

其中 H 1 ( Ω ) H^1(\Omega) H1(Ω)是Sobolev空间,表示在 Ω \Omega Ω上的函数 v v v和其一阶偏导数都是平方可积的。边界条件 v ∣ ∂ Ω = 0 v|_{\partial\Omega} = 0 vΩ=0确保了 v v v在边界上取值为0。

(2) 要求解与 J ( u ) = min ⁡ M J ( v ) J(u) = \min_{M} J(v) J(u)=minMJ(v)等价的偏微分方程定解问题,我们需要使用变分法。首先,令 J ( u ) J(u) J(u)关于 u u u的变分为0,即

δ J ( u ) = 0 \delta J(u) = 0 δJ(u)=0

这将导出Euler-Lagrange方程:

∂ ∂ x ( u x 1 + u x 2 + u y 2 ) + ∂ ∂ y ( u y 1 + u x 2 + u y 2 ) = 0 \frac{\partial}{\partial x}\left(\frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}}\right) + \frac{\partial}{\partial y}\left(\frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}}\right) = 0 x(1+ux2+uy2 ux)+y(1+ux2+uy2 uy)=0

其中, u x = ∂ u ∂ x u_x = \frac{\partial u}{\partial x} ux=xu u y = ∂ u ∂ y u_y = \frac{\partial u}{\partial y} uy=yu。结合边界条件 u ∣ ∂ Ω = 0 u|_{\partial\Omega} = 0 uΩ=0,我们得到偏微分方程定解问题:

{ ∂ ∂ x ( u x 1 + u x 2 + u y 2 ) + ∂ ∂ y ( u y 1 + u x 2 + u y 2 ) = 0 , in  Ω u = 0 , on  ∂ Ω \begin{cases} \frac{\partial}{\partial x}\left(\frac{u_x}{\sqrt{1 + u_x^2 + u_y^2}}\right) + \frac{\partial}{\partial y}\left(\frac{u_y}{\sqrt{1 + u_x^2 + u_y^2}}\right) = 0, & \text{in } \Omega \\ u = 0, & \text{on } \partial\Omega \end{cases} x(1+ux2+uy2 ux)+y(1+ux2+uy2 uy)=0,u=0,in Ωon Ω

(3) 对于这个特定的问题,解析解是比较困难的,因为它是一个非线性偏微分方程。但是,我们可以观察到平面 u ( x , y ) = 0 u(x,y) = 0 u(x,y)=0是该方程的一个平凡解。在一些特定的情况下,可能存在其他非平凡的解,但是通常需要数值方法来求解。对于这个问题,我们可以使用有限元方法、有限差分方法或其他数值方法来近似求解。在实际应用中,根据问题的具体情况选择合适的数值方法是很重要的。

变分问题边值问题的导出 R 3 \mathbb{R}^3 R3区域

Ω \Omega Ω R 3 \mathbb{R}^3 R3中的有界开区域, Γ \Gamma Γ Ω \Omega Ω的光滑边界。
Ω \Omega Ω上定义的泛函为 J ( v ) = ∭ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 + ( ∂ v ∂ z ) 2 ] d x d y d z + ∬ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\iiint_{\Omega}\frac{1}{2}[(\frac{\partial{v}}{\partial{x}})^2+(\frac{\partial{v}}{\partial{y}})^2+(\frac{\partial{v}}{\partial{z}})^2]dxdydz+\iint_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=Ω21[(xv)2+(yv)2+(zv)2]dxdydz+Γ(21σv2gv)ds V = C 2 ( Ω ) ∩ C 1 ( Ω ‾ ) V=C^2(\Omega)\cap C^1(\overline{\Omega}) V=C2(Ω)C1(Ω),变分问题的描述为:求 u ∈ V u\in V uV,使得 J ( u ) = m i n v ∈ V J ( v ) J(u)=min_{v\in V}J(v) J(u)=minvVJ(v)。请导出与这个变分问题等价的边值问题。

解:

要导出与给定变分问题等价的边值问题,我们可以使用变分法的基本原理。首先,我们需要计算泛函 J ( v ) J(v) J(v) 的一阶变分,然后将其等于零。这将导致一个欧拉-拉格朗日方程,它是一个偏微分方程,与原始的变分问题等价。

给定的泛函是:
J ( v ) = ∭ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 + ( ∂ v ∂ z ) 2 ]   d x   d y   d z + ∬ Γ ( 1 2 σ v 2 − g v )   d s J(v) = \iiint_{\Omega} \frac{1}{2} \left[ \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 \right] \,dx\,dy\,dz + \iint_{\Gamma} \left(\frac{1}{2} \sigma v^2 - gv\right) \,ds J(v)=Ω21[(xv)2+(yv)2+(zv)2]dxdydz+Γ(21σv2gv)ds

对于任意 v ∈ V v \in V vV w ∈ V w \in V wV,考虑泛函 J ( v + ϵ w ) J(v + \epsilon w) J(v+ϵw),其中 ϵ \epsilon ϵ 是一个小参数。 J ( v ) J(v) J(v) v v v 处取得最小值意味着 d d ϵ J ( v + ϵ w ) ∣ ϵ = 0 = 0 \frac{d}{d\epsilon} J(v + \epsilon w) |_{\epsilon=0} = 0 dϵdJ(v+ϵw)ϵ=0=0 对于所有 w ∈ V w \in V wV 成立。

计算一阶变分:

δ J ( v ; w ) = d d ϵ J ( v + ϵ w ) ∣ ϵ = 0 = ∭ Ω [ ∂ v ∂ x ∂ w ∂ x + ∂ v ∂ y ∂ w ∂ y + ∂ v ∂ z ∂ w ∂ z ]   d x   d y   d z + ∬ Γ ( σ v w − g w )   d s \delta J(v;w) = \frac{d}{d\epsilon} J(v + \epsilon w) |_{\epsilon=0}\\ =\iiint_{\Omega} \left[ \frac{\partial v}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \frac{\partial w}{\partial z} \right] \,dx\,dy\,dz + \iint_{\Gamma} (\sigma v w - gw) \,ds δJ(v;w)=dϵdJ(v+ϵw)ϵ=0=Ω[xvxw+yvyw+zvzw]dxdydz+Γ(σvwgw)ds

使用分部积分和散度定理,我们可以将体积积分中的项转换为边界项和包含二阶导数的项。对于 Ω \Omega Ω 中的任意 w w w,我们有:

∭ Ω ∇ v ⋅ ∇ w   d x   d y   d z = − ∭ Ω w Δ v   d x   d y   d z + ∬ Γ w ∂ v ∂ n   d s \iiint_{\Omega} \nabla v \cdot \nabla w \,dx\,dy\,dz = -\iiint_{\Omega} w \Delta v \,dx\,dy\,dz + \iint_{\Gamma} w \frac{\partial v}{\partial n} \,ds Ωvwdxdydz=ΩwΔvdxdydz+Γwnvds

其中 Δ v = ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 + ∂ 2 v ∂ z 2 \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} Δv=x22v+y22v+z22v 是拉普拉斯算子, ∂ v ∂ n \frac{\partial v}{\partial n} nv v v v 沿着外法向 n n n 的导数。

将这个表达式代入 δ J ( v ; w ) \delta J(v; w) δJ(v;w),我们得到:

δ J ( v ; w ) = − ∭ Ω w Δ v   d x   d y   d z + ∬ Γ w ( ∂ v ∂ n + σ v − g )   d s \delta J(v; w) = -\iiint_{\Omega} w \Delta v \,dx\,dy\,dz + \iint_{\Gamma} w \left(\frac{\partial v}{\partial n} + \sigma v - g\right) \,ds δJ(v;w)=ΩwΔvdxdydz+Γw(nv+σvg)ds

由于 δ J ( v ; w ) = 0 \delta J(v; w) = 0 δJ(v;w)=0 对于所有 w ∈ V w \in V wV 成立,我们得到以下等价的边值问题:

  1. Ω \Omega Ω 中: Δ v = 0 \Delta v = 0 Δv=0 (泊松方程)
  2. Γ \Gamma Γ 上: ∂ v ∂ n + σ v = g \frac{\partial v}{\partial n} + \sigma v = g nv+σv=g (诺伊曼边界条件)

因此,与原始变分问题等价的边值问题是求解上述泊松方程,满足给定的诺伊曼边界条件。

变分问题边值问题的导出 R 2 \mathbb{R}^2 R2区域

Ω \Omega Ω R 2 \mathbb{R}^2 R2中的有界开区域, Γ \Gamma Γ Ω \Omega Ω的光滑边界。
Ω \Omega Ω上定义的泛函为 J ( v ) = ∬ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 ] d x d y + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\iint_{\Omega}\frac{1}{2}[(\frac{\partial{v}}{\partial{x}})^2+(\frac{\partial{v}}{\partial{y}})^2]dxdy+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=Ω21[(xv)2+(yv)2]dxdy+Γ(21σv2gv)ds
V = C 2 ( Ω ) ∩ C 1 ( Ω ‾ ) V=C^2(\Omega)\cap C^1(\overline{\Omega}) V=C2(Ω)C1(Ω),变分问题的描述为:求 u ∈ V u\in V uV,使得 J ( u ) = m i n v ∈ V J ( v ) J(u)=min_{v\in V}J(v) J(u)=minvVJ(v)。请导出与这个变分问题等价的边值问题。

解:

这个问题可以通过求解泛函 J ( v ) J(v) J(v) 的极值来求解,这可以通过求解相应的欧拉-拉格朗日方程来完成。

泛函的一阶变分为:

δ J ( v ) = ∬ Ω ( ∂ v ∂ x ∂ ( δ v ) ∂ x + ∂ v ∂ y ∂ ( δ v ) ∂ y ) d x d y + ∫ Γ ( σ v − g ) δ v   d s \delta J(v) = \iint_{\Omega} \left(\frac{\partial v}{\partial x}\frac{\partial (\delta v)}{\partial x} + \frac{\partial v}{\partial y}\frac{\partial (\delta v)}{\partial y}\right) dx dy + \int_{\Gamma} (\sigma v - g) \delta v \, ds δJ(v)=Ω(xvx(δv)+yvy(δv))dxdy+Γ(σvg)δvds

δ J ( v ) = 0 \delta J(v) = 0 δJ(v)=0 对所有的 δ v ∈ V \delta v \in V δvV,我们得到:

∬ Ω ( ∂ v ∂ x ∂ ( δ v ) ∂ x + ∂ v ∂ y ∂ ( δ v ) ∂ y ) d x d y + ∫ Γ σ v δ v   d s = ∫ Γ g δ v   d s \iint_{\Omega} \left(\frac{\partial v}{\partial x}\frac{\partial (\delta v)}{\partial x} + \frac{\partial v}{\partial y}\frac{\partial (\delta v)}{\partial y}\right) dx dy + \int_{\Gamma} \sigma v \delta v \, ds = \int_{\Gamma} g \delta v \, ds Ω(xvx(δv)+yvy(δv))dxdy+Γσvδvds=Γgδvds

通过分部积分和格林公式,我们可以将上述方程转换为:

− ∬ Ω ( Δ v ) δ v   d x d y + ∫ Γ ( ∂ v ∂ n + σ v ) δ v   d s = ∫ Γ g δ v   d s -\iint_{\Omega} (\Delta v) \delta v \, dx dy + \int_{\Gamma} \left(\frac{\partial v}{\partial n} + \sigma v\right) \delta v \, ds = \int_{\Gamma} g \delta v \, ds Ω(Δv)δvdxdy+Γ(nv+σv)δvds=Γgδvds

其中 Δ v = ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} Δv=x22v+y22v 是拉普拉斯算子, ∂ v ∂ n \frac{\partial v}{\partial n} nv v v v 沿边界 Γ \Gamma Γ 的法向导数。

因此,与原始变分问题等价的边值问题为:

{ − Δ u = 0 in  Ω , ∂ u ∂ n + σ u = g on  Γ . \begin{cases} -\Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \sigma u = g & \text{on } \Gamma. \end{cases} {Δu=0nu+σu=gin Ω,on Γ.

这是一个定义在区域 Ω \Omega Ω 上的带有诺依曼边界条件的泊松方程。

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值