DL00232-基于DeepLabv3+改进的道路提取模型ASPP注意力等完整实现

 

 ASPP模块中加入注意力模块,多尺度推理方法,它在不同的缩放比例下对输入数据进行前向传播,并将所有结果累加起来作为最终输出。这种方法可以提高模型对不同尺寸物体的检测能力。deeplabv3p分类器部分通常是一个1x1卷积层,用于将模型提取的特征进行分类。在 DeepLab V3+ 中,分类器被放置在 ASPP(Atrous Spatial Pyramid Pooling)模块的顶部,以利用多个空洞卷积核捕捉不同尺度的特征。ASPP 模块中的分类器具有多个并行的分支,每个分支都有不同的空洞卷积核大小和空洞率,以提取不同尺度的特征信息。在整个模型的训练过程中,分类器的参数也是需要进行训练的。

 

 

 

### 改进DeepLabV3+ ASPP模块的方法和技巧 #### 1. 增加更多尺度的空洞卷积 为了更好地捕捉多尺度信息,可以在ASPP模块中引入更多的空孔率设置。通过增加不同空洞率的卷积核数量,能够更全面地覆盖各种尺度的信息,从而提升模型对于复杂场景的理解能力[^2]。 #### 2. 使用可变形卷积代替标准卷积 采用可变形卷积替代传统的固定位置采样的卷积操作,在保持原有计算效率的同时赋予网络自适应调整感受野形状的能力。这有助于解决因物体形变而导致的标准网格状取样方式无法有效表示目标边界的问题[^3]。 #### 3. 引入注意力机制增强重要区域响应 结合通道注意或空间注意等策略强化对语义上有意义部分的关注度。具体做法是在经过一系列卷积处理之后加入SENet-like结构或其他形式的Attention Module, 对输出特征图施加权重调节作用,使最终得到的结果更加聚焦于关键部位[^1]。 #### 4. 调整全局平均池化层的作用范围 改变Global Average Pooling (GAP) 层的感受野大小及其连接方式也是一项有效的优化措施。例如将其替换为AdaptiveAvgPool2d以适应不同分辨率输入;或是让该分支与其他子路径共享参数进而减少整体参数量并促进跨层次间的信息交流。 ```python import torch.nn as nn class Improved_ASPP(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.aspp_branches = [ nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1), *[nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=dilation_rate, dilation=dilation_rate)) for dilation_rate in [6, 12, 18]], nn.AdaptiveAvgPool2d((None, None)), # 自适应全局均值池化 DeformableConv2d(in_channels, out_channels), # 可变形卷积 ] self.attention_module = SpatialAttention() # 添加空间注意力机制 def forward(self, x): outputs = [] for branch in self.aspp_branches[:-1]: output = F.interpolate(branch(x), size=x.shape[-2:], mode='bilinear', align_corners=True) outputs.append(output) attention_output = self.attention_module(outputs[-1]) final_output = sum([attention_output]+outputs)/len(outputs) return final_output ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值