ASPP模块中加入注意力模块,多尺度推理方法,它在不同的缩放比例下对输入数据进行前向传播,并将所有结果累加起来作为最终输出。这种方法可以提高模型对不同尺寸物体的检测能力。deeplabv3p分类器部分通常是一个1x1卷积层,用于将模型提取的特征进行分类。在 DeepLab V3+ 中,分类器被放置在 ASPP(Atrous Spatial Pyramid Pooling)模块的顶部,以利用多个空洞卷积核捕捉不同尺度的特征。ASPP 模块中的分类器具有多个并行的分支,每个分支都有不同的空洞卷积核大小和空洞率,以提取不同尺度的特征信息。在整个模型的训练过程中,分类器的参数也是需要进行训练的。