目录
六、代码示例:使用Hugging Face Transformers进行微调
前言
随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了令人瞩目的成就。这些模型通过在海量文本数据上进行预训练,学习到了语言的基本模式和结构。然而,预训练模型在特定领域或任务上的表现可能并不理想,因此微调(Fine-Tuning)成为了提升模型性能的关键步骤。本文将详细介绍大模型微调数据准备的全过程,包括概念讲解、代码示例、应用场景、注意事项以及相关的架构图和流程图,帮助读者更好地理解和应用这一技术。