AI大模型落地应用场景全景图

宝子们👋,今天来给大家分享超厉害的 AI 大模型落地应用场景全景图!IDC 总结出的这些内容,对咱了解 AI 发展超有帮助~

十大核心能力超强大

涵盖文本生成✍、图像生成🖼、视频生成🎬、推荐搜索🔍、数据分析📊、智能决策🧠、会话问答💬、知识管理📚、多模态🎯、逻辑推理🧐。这些能力就像超级引擎,推动 AI 大模型在各个领域发光发热。

十大应用领域潜力无限

1、金融:从风险评估到智能投顾,AI 大模型助力金融行业精准决策。比如在信贷审批中,通过数据分析和智能决策能力,快速评估贷款人信用风险。

2、互联网:推荐搜索功能让用户快速找到所需内容,多模态能力提升用户体验,像短视频平台的智能推荐。

3、零售消费:利用图像生成设计产品包装,用推荐搜索为消费者精准推送商品,提升购物效率。

4、医药健康:药物研发中通过数据分析加速进程,会话问答为患者提供初步诊断建议,如智能医疗助手。

5、智能终端:语音助手借助会话问答和逻辑推理,实现更自然的人机交互,提升用户使用感。

6、游戏:打造智能 NPC,基于文本生成和多模态能力,让游戏角色更智能,增强游戏趣味性。

7、企业服务:知识管理帮助企业高效整理信息,智能决策助力企业制定战略,提升企业运营效率。

8、文化娱乐:视频生成用于制作特效片段,文本生成创作剧本、歌词,丰富娱乐内容创作。

9、教育科研:教育领域实现个性化学习辅导,科研中通过数据分析助力研究,如分析实验数据。

10、汽车:自动驾驶依靠智能决策和逻辑推理,保障行车安全,智能座舱用会话问答提供便捷服务。

每个应用领域下还有十个细分场景,AI 大模型在这些场景中的落地成熟度和发展潜力都不容小觑。企业可以根据自身需求,参考这些信息,选择最适合的落地场景和服务,搭上 AI 发展的快车🚀。

你觉得哪个领域的应用最有前景呢🧐?快来评论区聊聊吧👇

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### 国内大模型测试应用全景图概述 国内大模型的发展历程显示,在过去几年间,中国在人工智能尤其是大规模预训练模型方面取得了显著进步。这些成果不仅体现在技术研发上,更在于实际应用场景中的广泛应用和发展。 #### 发展现状与最新进展 目前,国产大模型已经在多个行业中实现了成功落地并展现出良好的性能指标和商业价值。具体而言: - **发展历程**:自2020年以来,随着算法优化和技术突破,中国的科研机构及企业陆续推出了多款具有国际竞争力的大规模预训练语言模型[^1]。 - **数据表现**:根据最新的市场调研数据显示,截至2024年初,已有超过百家中国企业参与到这一轮AI浪潮之中,其中不乏一些独角兽级别的初创公司以及传统行业的领军者们积极布局该领域。 #### 行业应用实例 根据不同行业特点,大模型应用于各种特定的任务当中,以下是几个典型的应用案例: - **云计算与通信服务提供商的合作模式**:“1+3+N”合作体系成为推动跨行业发展的重要机制之一。通过建立统一的计算资源池来支持大型机器学习项目的高效运行;围绕基础软件开发、通用模型改进及个性化调整三个方面进行深入探索;最终针对不同业务需求设计出一系列完整的解决方案集[^2]。 - **垂直领域的深度渗透** - *气象预报*:借助于强大的自然语言理解和图像识别能力,能够实现更加精准长期天气变化趋势预测,并为企业级用户提供个性化的气候咨询服务; - *金融服务*:自动撰写高质量的投资分析报告,实时更新金融市场动态资讯,同时还能作为虚拟助手参与客户互动交流过程; - *医疗卫生事业*:辅助医务人员完成病历记录整理工作,提供即时在线问诊平台,甚至协助手术机器人执行复杂操作任务[^3]。 #### 可信应用框架建设 尽管如此,对于某些高度敏感且风险较高的作业环境来说(比如临床诊疗决策),单纯依靠现有的技术水平还难以完全满足其高标准的要求。因此,为了促进这类高端制造业向智能化转型的步伐加快,有必要建立健全一套适用于各个细分市场的信任保障措施——即所谓的“可信应用框架”。它强调了四个核心要素的重要性:专业性、可控性、真实性及时效安全性的维护,从而确保基于大模型构建起来的信息系统能够在任何情况下都保持稳定可靠的工作状态[^4]。 ```python # Python代码示例展示如何加载一个预训练好的BERT模型用于文本分类任务 from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('bert-base-chinese') text = "这是一个关于中文分词的例子" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() print(f'Predicted class ID: {predicted_class_id}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值