首发 | 昆仑芯 | 国产AI卡DeepSeek训练推理全版本适配、性能卓越,一键部署等您来(附文档下载方式)...

1184598c30fb43be69579d5adc2a5dbd.gif

短短两周,DeepSeek成为全球增速最快的AI应用。凭借卓越的性能和广泛的应用场景,这匹大模型黑马已然成为行业标杆,为千行百业提供了AI解决方案新选择。蛇年开工当天,昆仑芯新一代产品P800万卡集群点亮的消息引发关注,三万卡集群也将于近日点亮,为国产AI算力注入强大势能。

昆仑芯在大模型时代爆发出卓越的竞争力,而这正是基于十余年真实业务场景历练以及独特的自研优势。作为国产AI芯片引领者,昆仑芯已完成DeepSeek训练推理全版本适配,且性能卓越、成本效率极致,一键部署,为广大开发者提供更快、更强、更省的训推体验。

df5399faa9e690f8509ae3cce8fcd7e9.png

全版本:率先完成训练推理DeepSeek全版本适配

在模型适配方面,昆仑芯领先业界。在DeepSeek-V3/R1上线不久,昆仑芯便率先完成全版本模型适配,这其中包括DeepSeek MoE 模型及其蒸馏的Llama/Qwen等小规模dense模型(详见下方海报)。

同时,昆仑芯也已全面适配文心系列、Llama、Qwen、ChatGLM、Baichuan等各类大模型的推理和训练任务,性能优势明显。在各个行业客户、合作伙伴的业务场景中,昆仑芯已实际上线运行各类大模型任务;通过千卡和万卡集群为客户提供了稳定的服务和优秀的性能表现。

9b059f288e39bd4ff9b9fe512944e960.jpeg

dbd0f9c5bb381c3fbc588bf98cd5e0b4.png

性能卓越:前瞻产品定义、极致成本效率

得益于昆仑芯前瞻的产品定义,昆仑芯产品性能表现卓越,成本优势领先。

昆仑芯P800可以较好的支撑DeepSeek系列MoE模型大规模训练任务,全面支持MLA、多专家并行等特性,仅需32台即可支持模型全参训练,高效完成模型持续训练和微调。

P800显存规格优于同类主流GPU20%-50%,对MoE架构更加友好,且率先支持8bit推理,单机8卡即可运行 671B 模型。正因如此,昆仑芯相较同类产品更加易于部署,同时可显著降低运行成本,轻松完成DeepSeek-V3/R1全版本推理任务。

8648f508adf73570775588872b34dd9e.png

开发者友好:一键部署、即刻上线

P800生态完备,易用性强,可以实现对训练和推理任务的快速适配。P800快速适配支持了DeepSeek-V3/R1的持续全参数训练,LoRA等PEFT能力,提供给用户开箱即用的训练体验。基于昆仑芯完整的软件栈生态,两个步骤即可轻松实现在昆仑芯P800上进行DeepSeek-V3/R1推理部署,对广大开发者十分友好。

c3523698f096935fca74e2acf6c218bf.png

欢迎体验:两步完成DeepSeek-V3/R1模型推理部署

1 .资源准备

主要是镜像和模型,镜像提供完整的依赖环境开箱即用。

  • 模型准备

昆仑芯P800支持8bit推理,下载官方权重后使用如下命令进行量化(后文附有下载方式);其他不同尺寸蒸馏模型则通过huggingface下载即可。

29d6711df2f5e7885baf79d6bc6d777b.png

  • 镜像准备(后文附有下载方式)

2 .启动服务&请求示例

server和client使用方式和vllm社区基本一致,零成本上手,如下:

  • 启动服务

镜像中一键启动,采样和推理参数可根据实际业务场景在脚本中配置。

04c3b34cbaf74d4ccb798d43afeaf94c.jpeg

  • 请求示例

下图为一个简单的请求示例:

b2388f704ec6bc3c9d80be1bd991a16b.jpeg

以下两种方式均可快速获取文档:
  • 扫码获取

4ce12af1a06f8643503c70af67d8f898.png

  • 发送邮件至:kunlunxin01@baidu.com

<think>好的,我现在需要回答用户关于如何在昆仑部署大模型的问题。首先,我需要了解昆仑的基本情况。昆仑是百度自主研发的AI片,主要用于加速深度学习任务。用户可能希望利用它的高性能部署大模型,比如类似Alpaca这样的模型。 接下来,我得考虑部署大模型的一般步骤。通常,这包括环境配置、模型优化、框架支持、分布式训练推理优化等。但具体到昆仑,可能需要特定的工具链或软件支持。比如,百度可能有自己的深度学习框架,如PaddlePaddle,是否支持昆仑? 根据引用[2]提到的,大模型推理面临显存占用多、计算规模大的问题,所以在部署时需要考虑显存优化和计算优化。这可能涉及到模型量化、剪枝等技术。同时,引用[3]提到百度有四层架构,包括云基础设施和框架,可能昆仑已经集成到这些架构中,所以需要查阅相关文,看看是否有现成的解决方案。 然后,用户可能需要具体的步骤,比如安装驱动、配置环境、模型转换等。例如,是否需要在昆仑上使用特定的库或编译器?比如,英伟达有CUDA,昆仑是否有类似的工具? 另外,分布式训练也是关键。大模型通常需要多并行,昆仑是否支持高效的分布式计算?可能涉及到通信库的优化,如类似NCCL的工具。 还有模型优化方面,比如使用混合精度训练、算子融合等技术,这些在昆仑上是否有最佳实践?可能需要参考百度的官方文或案例。 可能还需要考虑与现有框架的集成,比如PyTorch或TensorFlow是否支持昆仑作为后端。如果不支持,可能需要使用百度的PaddlePaddle框架,或者通过转换工具将模型转换到支持的格式。 最后,用户可能需要教程或示例代码,比如如何加载模型、进行推理等。如果有官方提供的示例,可以引导用户参考。 总结步骤可能包括:1. 环境搭建;2. 模型转换与优化;3. 分布式训练配置;4. 推理部署;5. 性能调优。需要结合百度提供的工具链和文,确保每一步都可行。 还要注意引用相关的内容,比如引用[2]提到显存和计算问题,所以在部署时要考虑这些点。引用[3]提到百度AI技术,可能昆仑已经整合到其中,所以可以推荐用户查阅百度的智能云服务相关资源。</think>在昆仑(Kunlunxin)上部署大模型需要结合硬件特性与软件生态进行优化。以下是具体步骤及方法: ### 一、环境准备与硬件配置 1. **昆仑硬件要求** - 确保使用支持昆仑加速的服务器(如百度智能云提供的昆仑实例),并安装最新驱动[^3]。 - 检查显存容量,大模型部署通常需至少16GB显存,推荐使用多并行[^2]。 2. **软件依赖安装** - 安装昆仑AI加速库(如KML, Kunlun Module Library)及配套的深度学习框架(如PaddlePaddle昆仑专用版本)。 - 配置PyTorch或TensorFlow的昆仑后端支持(若官方提供)。 ```bash # 示例:安装PaddlePaddle昆仑版本 pip install paddlepaddle-kunlunxin -f https://www.paddlepaddle.org.cn/whl/kunlunxin/stable.html ``` --- ### 二、模型优化与适配 1. **模型量化与压缩** - 使用动态量化或静态量化减少模型计算量,例如将FP32转为INT8,降低显存占用[^2]。 - 通过剪枝(Pruning)移除冗余参数,提升推理速度。 2. **算子融合与编译优化** - 使用昆仑编译器(如KCC)对模型算子进行融合,减少内存访问开销。 - 针对昆仑架构重写高性能算子(如Attention机制)。 --- ### 三、分布式训练推理部署 1. **多并行策略** - 采用数据并行或模型并行,通过昆仑集合通信库(如KNCC)优化多通信。 - 使用百度自研的分布式训练框架(如FleetX)简化配置。 ```python # 示例:PaddlePaddle多训练 import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() fleet.init(is_collective=True) ``` 2. **推理加速与服务化** - 使用昆仑推理引擎(如Paddle Inference)部署模型,支持动态批处理(Dynamic Batching)和低延迟优化。 - 集成至百度智能云API服务,实现高并发推理[^3]。 --- ### 四、性能调优与监控 1. **显存管理** - 通过`Memory Profiler`工具分析显存占用,优化中间变量释放。 2. **计算效率提升** - 使用混合精度训练(FP16/FP32),启用昆仑Tensor Core加速。 3. **监控与日志** - 集成百度云监控服务,实时跟踪GPU利用率、显存占用等指标[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值