图像分割“The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation”

code:: https://github.com/SimJeg/FC-DenseNet
DSOD中的一篇参考文献,不需要预训练进行图像分割,同样使用了DenseNet。在CamVid和Gatech数据库上,没有预训练,没有CRF后处理,达到了state-of-the-art的效果。

DenseNet的优点:(1)参数有效性,参数使用效率高;(2)隐式深层监督,short paths;(3)特征重用。

作者将DenseNets扩展,改成分割网络。直接建立上采样的path,高分辨率的特征和数量较多的滤波器相乘,计算量会比较大。作者仅上采样由Dense block生成的特征图,上采样的dense block吧哦哦汗其他dense block的信息,高分辨率的信息通过skip connection传输。提出的结构如下图所示:
这里写图片描述

相关工作
语义分割的进展:
(1)改进上采样方法,提高FCN连接度;上采样方法包括反池话,跳层连接,等价映射,长距离跳层连接。
(2)新的模型,适应复杂背景理解;RNN,dilated 卷积,dilated卷积堆;
(3)改进FCN,结构化的输出;CRF,RNN
目前所有的工作需要预训练的模型。

全卷积DenseNets
FCN包含下采样,上采样和跳层连接。论文改进DenseNet,以重用特征而又避免特征爆炸。
1. DenseNet回顾
标准的CNN, xl=Hl(xl1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值