code:: https://github.com/SimJeg/FC-DenseNet
DSOD中的一篇参考文献,不需要预训练进行图像分割,同样使用了DenseNet。在CamVid和Gatech数据库上,没有预训练,没有CRF后处理,达到了state-of-the-art的效果。
DenseNet的优点:(1)参数有效性,参数使用效率高;(2)隐式深层监督,short paths;(3)特征重用。
作者将DenseNets扩展,改成分割网络。直接建立上采样的path,高分辨率的特征和数量较多的滤波器相乘,计算量会比较大。作者仅上采样由Dense block生成的特征图,上采样的dense block吧哦哦汗其他dense block的信息,高分辨率的信息通过skip connection传输。提出的结构如下图所示:
相关工作
语义分割的进展:
(1)改进上采样方法,提高FCN连接度;上采样方法包括反池话,跳层连接,等价映射,长距离跳层连接。
(2)新的模型,适应复杂背景理解;RNN,dilated 卷积,dilated卷积堆;
(3)改进FCN,结构化的输出;CRF,RNN
目前所有的工作需要预训练的模型。
全卷积DenseNets
FCN包含下采样,上采样和跳层连接。论文改进DenseNet,以重用特征而又避免特征爆炸。
1. DenseNet回顾
标准的CNN, xl=Hl(xl−1)