26对称矩阵及正定性

为什么投影矩阵是一个对称矩阵?因为 A A T AA^T AAT一定是一个对称矩阵。证明: ( A A T ) T = A T T A T = A A T (AA^T)^T={A^T}^TA^T=AA^T (AAT)T=ATTAT=AAT,转置等于其本身,符合对称矩阵定义。

一、对称矩阵(Symmetric matrices)

毫不夸张地讲,对阵矩阵 S S S 是在线性代数中最为重要的一类矩阵。如果矩阵元素都是实数,那么,它的特征值和特征向量的特点如下:

  • 特征值都是实数
  • 特征向量都是垂直的(证明看教材)

对于一个单位矩阵,任何向量都是其特征向量,所以这里指的特征向量应该理解为可以选出的垂直的特征向量。一般地,如果矩阵可对角化[1],则:
A = S Λ S − 1 (1) A=S\Lambda S^{-1}\tag{1} A=SΛS1(1)
如果矩阵 A A A还是对称矩阵,那么:
A = Q Λ Q − 1 = Q Λ Q T (2) A=Q\Lambda Q^{-1}=Q\Lambda Q^{T} \tag{2} A=QΛQ1=QΛQT(2)

(2)为什么 S S S变成了 Q Q Q?将特征向量进行缩放(缩放后仍是特征向量)至单位向量,一个简单的例子: [ a 1 a 2 ] \begin{bmatrix} a_1\\a_2 \end{bmatrix} [a1a2]变成 [ a 1 a 1 2 + a 2 2 a 2 a 1 2 + a 2 2 ] \begin{bmatrix} \frac{a_1}{\sqrt{a_1^2+a_2^2}}\\\frac{a_2}{\sqrt{a_1^2+a_2^2}} \end{bmatrix} a12+a22 a1a12+a22 a2 ,再把对应的系数转移到新的 Λ \Lambda Λ 矩阵中去.

给定一个对称矩阵,可以分解为三项,他完全展示了对称矩阵的特征值和特征向量以及其对称的性质。在数学上称为谱定理( Spectral theorem),这里指的是特征向量矩阵,不光是数学,光学和力学(主轴定理)也有类似的概念。

下面我们来探讨一下为什么是对称矩阵一定是一个实特征值。

A x = λ x (3) Ax=\lambda x\tag{3} Ax=λx(3)
左右两边同时取共轭:
A ˉ x ˉ = λ ˉ x ˉ (4) \bar A \bar x=\bar\lambda\bar x\tag{4} Aˉxˉ=λˉxˉ(4)
因为 A A A 是实矩阵所以:
A x ˉ = λ ˉ x ˉ (5) A\bar x=\bar\lambda\bar x\tag{5} Axˉ=λˉxˉ(5)
左右两边同时取转置:
x ˉ T A = x ˉ λ ˉ (6) \bar x^TA=\bar x\bar \lambda\tag{6} xˉTA=xˉλˉ(6)
(6)左右两边乘以 x x x有:
x ˉ T A x = x ˉ T λ ˉ x (7) \bar x^TA x=\bar x^T\bar \lambda x\tag{7} xˉTAx=xˉTλˉx(7)

(3)左右两边同时乘以 x ˉ T \bar x^T xˉT有:
x ˉ T A x = λ x ˉ T x (8) \bar x^TAx=\lambda\bar x^Tx\tag{8} xˉTAx=λxˉTx(8)
对比(7)(8)有:
x ˉ T λ ˉ x = λ x ˉ T x (9) \bar x^T\bar \lambda x=\lambda\bar x^Tx\tag{9} xˉTλˉx=λxˉTx(9)
因为 x ˉ T x \bar x^Tx xˉTx不可能为零向量,所有:
λ ˉ = λ (10) \bar \lambda=\lambda\tag{10} λˉ=λ(10)
至此,可以说明其特征根一定是一个实数。

x ˉ T x = x ˉ 1 x 1 + x ˉ 2 x 2 + ⋯ + x ˉ n x n \bar x^Tx=\bar x_1x_1+\bar x_2x_2+\cdots+\bar x_nx_n xˉTx=xˉ1x1+xˉ2x2++xˉnxn,因为 ( a + b i ) ( a − b i ) = a 2 + b 2 > 0 (a+bi)(a-bi)=a^2+b^2\gt0 (a+bi)(abi)=a2+b2>0

假如 A A A不是一个实对称矩阵,而是一个复对称矩阵必须要满足 A = A ˉ T A=\bar A^T A=AˉT(百分之90都是实对称矩阵)。

继续讨论 A = Q Λ Q T A=Q\Lambda Q^T A=QΛQT
Q Λ Q T = [ q 1 q 2 ⋯ q n ] [ λ 1 λ 2 ] [ q 1 T q 2 T ⋮ q n T ] = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + ⋯ + λ n q n q n T Q\Lambda Q^T=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix}\begin{bmatrix}\lambda_1& & & &\\ &\lambda_2\\& & & & \end{bmatrix}\begin{bmatrix}q_1^T\\q_2^T\\\vdots\\q_n^T\end{bmatrix}=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+\cdots+\lambda_nq_nq_n^T QΛQT=[q1q2qn] λ1λ2 q1Tq2TqnT =λ1q1q1T+λ2q2q2T++λnqnqnT

向量投影矩阵的公式为 P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT,如果 a T a = 1 a^Ta=1 aTa=1,那么投影矩阵就是 a a T . aa^T. aaT.

也就是说每一个对称矩阵都是一些相互垂直的投影矩阵的组合。

二、正定性

计算一个50阶的矩阵的特征值,显然,手工计算不是一个明智的选择。但是我们能够通过一些方法来辅助、界定这些特征值,比如说主元正负:

  • 主元的符号与特征值的符号相同
  • 正主元个数等于正特征值个数

正定矩阵(Positive definite symmetric matrix):

  • 所有特征值都为正数
  • 所有主元都为正数
  • 所有子行列式都是正数

只要满足上述的一个条件,其它两个条件也是满足的,这样的矩阵称为正定矩阵。


[1] 方阵可对角化

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值