生成对抗网络——CGAN(代码+理解)

目录

一、CGAN模型介绍

二、CGAN训练流程

1. 初始化

2. 数据准备

3. 输出模型计算结果

4. 计算损失

5. 反向传播和优化

6. 迭代训练

三、CGAN实现

1. 模型结构

(1)生成器(Generator)

(2)判别器(Discriminator)

2. 代码

3. 训练结果

四、学习中产生的疑问,及文心一言回答

1. torch.cat((self.label_emb(labels.long()), noise), -1) 函数理解

2. Discriminator 模型疑问


一、CGAN模型介绍

        CGAN(Conditional Generative Adversarial Network)模型是一种 深度学习模型,属于生成对抗网络(GAN)的一种 变体。它的 基本思想是通过 训练生成器和判别器 两个网络,使生成器能够生成与给定条件 相匹配的 合成数据,而判别器则 负责区分真实数据和 生成数据。相比于GAN引入了条件信息(y),使得生成器可以生成与给定条件相匹配的合成数据,从而提高了生成数据的可控性和针对性。

二、CGAN训练流程

1. 初始化

        首先,初始化生成器和判别器的网络参数本例未初始化

2. 数据准备

        准备真实数据集和对应的条件信息。条件信息可以是类别标签、文本描述等。

# labels 即真事条件信息
for i, (imgs, labels) in enumerate(dataloader):

# gen_labels 即假条件信息
gen_labels = torch.randint(0, opt.n_classes, (batch_size,))

3. 输出模型计算结果

1对于生成器:从随机噪声分布中采样噪声向量,并与条件信息一起输入到生成器中,生成合成数据。

gen_imgs = generator(z, gen_labels)

(2)对于判别器:将真实数据 及其 条件信息 和 生成数据及 其条件信息分别输入到判别器中,得到真实数据 和 生成数据的 判别结果。

validity_fake = discriminator(gen_imgs.detach(), gen_labels)

validity_real = discriminator(imgs, labels)

4. 计算损失

1生成器损失:鼓励判别器对生成样本及相应条件c的判断为“真实”,即最大化log(D(G(z|c), c))。

g_loss = adversarial_loss(validity, valid)

2判别器损失:激励判别器正确区分真实样本(X, c)与生成样本(G(z|c), c)

d_loss = (d_real_loss + d_fake_loss) / 2

5. 反向传播和优化

        使用梯度下降算法或其他优化算法更新生成器和判别器的网络参数,以最小化各自的损失函数。

6. 迭代训练

        重复步骤 3至 5,直到达到预设的训练轮数或满足其他停止条件。

三、CGAN实现

1. 模型结构

(1)生成器(Generator)

(2)判别器(Discriminator)

2. 代码

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
import matplotlib.pyplot as plt
import argparse
import numpy as np


parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=50, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)

dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "./others/",
        train=False,
        download=False,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

img_shape = (opt.channels, opt.img_size, opt.img_size)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.label_emb = nn.Embedding(opt.n_classes, opt.n_classes)

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim + opt.n_classes, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),   # np.prod 计算所有元素的乘积
            nn.Tanh()
        )

    def forward(self, noise, labels):
        # 噪声样本与标签的拼接,-1 表示最后一个维度
        gen_input = torch.cat((self.label_emb(labels.long()), noise), -1)
        img = self.model(gen_input)
        img = img.view(img.size(0), *img_shape)
        return img

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes)

        self.model = nn.Sequential(
            nn.Linear(opt.n_classes + int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),    # 将输入单元的一部分(本例中为40%)设置为0,有助于 防止过拟合
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 1),
        )

    def forward(self, img, labels):
        d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels.long())), -1)
        validity = self.model(d_in)
        return validity

# 实例化模型
generator = Generator()
discriminator = Discriminator()

# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

# 均方误差
adversarial_loss = torch.nn.MSELoss()


def sample_image(n_row, batches_done):
    """Saves a grid of generated digits ranging from 0 to n_classes"""
    # Sample noise
    z = torch.randn(n_row ** 2, opt.latent_dim)
    # Get labels ranging from 0 to n_classes for n rows
    labels = torch.Tensor(np.array([num for _ in range(n_row) for num in range(n_row)]))
    gen_imgs = generator(z, labels)
    save_image(gen_imgs.data, "./others/images/CGAN/%d.png" % batches_done, nrow=n_row, normalize=True)

def gen_img_plot(model, text_input, labels):
    prediction = np.squeeze(model(text_input, labels).detach().cpu().numpy()[:16])
    plt.figure(figsize=(4, 4))
    for i in range(16):
        plt.subplot(4, 4, i + 1)
        plt.imshow((prediction[i] + 1) / 2)
        plt.axis('off')
    plt.show()

# ----------
#  Training
# ----------
D_loss_ = []  # 记录训练过程中判别器的损失
G_loss_ = []  # 记录训练过程中生成器的损失
for epoch in range(opt.n_epochs):
    # 初始化损失值
    D_epoch_loss = 0
    G_epoch_loss = 0
    count = len(dataloader)  # 返回批次数
    for i, (imgs, labels) in enumerate(dataloader):
        batch_size = imgs.shape[0]
        valid = torch.ones(batch_size, 1)
        fake = torch.zeros(batch_size, 1)

        # 生成随机噪声 和 标签
        z = torch.randn(batch_size, opt.latent_dim)
        gen_labels = torch.randint(0, opt.n_classes, (batch_size,))

        # ---------------------
        #  Train Discriminator
        # ---------------------
        optimizer_D.zero_grad()
        gen_imgs = generator(z, gen_labels)

        validity_fake = discriminator(gen_imgs.detach(), gen_labels)
        d_fake_loss = adversarial_loss(validity_fake, fake)
        validity_real = discriminator(imgs, labels)
        d_real_loss = adversarial_loss(validity_real, valid)

        d_loss = (d_real_loss + d_fake_loss) / 2
        d_loss.backward()
        optimizer_D.step()

        # -----------------
        #  Train Generator
        # -----------------
        optimizer_G.zero_grad()
        validity = discriminator(gen_imgs, gen_labels)
        g_loss = adversarial_loss(validity, valid)
        g_loss.backward()
        optimizer_G.step()

        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
        )

        # batches_done = epoch * len(dataloader) + i
        # if batches_done % opt.sample_interval == 0:
        #     sample_image(n_row=10, batches_done=batches_done)

        with torch.no_grad():
            D_epoch_loss += d_loss
            G_epoch_loss += g_loss

        # 求平均损失
    with torch.no_grad():
        D_epoch_loss /= count
        G_epoch_loss /= count
        D_loss_.append(D_epoch_loss.item())
        G_loss_.append(G_epoch_loss.item())

        text_input = torch.randn(opt.batch_size, opt.latent_dim)
        text_labels = torch.randint(0, opt.n_classes, (opt.batch_size,))
        gen_img_plot(generator, text_input, text_labels)


x = [epoch + 1 for epoch in range(opt.n_epochs)]
plt.figure()
plt.plot(x, G_loss_, 'r')
plt.plot(x, D_loss_, 'b')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['G_loss', 'D_loss'])
plt.show()

3. 训练结果

四、学习中产生的疑问,及文心一言回答

1. torch.cat((self.label_emb(labels.long()), noise), -1) 函数理解

2. Discriminator 模型疑问


                          后续更新 GAN 的其他模型结构。

  • 12
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值