医学统计教程|PASS实现完全随机设计样本含量相等时两均数比较的样本量估计

将同质的实验对象随机地分配到研究因素各水平所对应的处理组,进行处理并观察,或从不同特征的总体中随机抽样,并对样本进行对比观察的设计方法,我们称之为完全随机设计(completely randomized design),又称为成组设计(grouped design),是医学研究中使用最广泛的设计方法之一。

在随机化分组过程中,各处理组的分组概率可以相等,也可以不相等。如常见的按1:1进行分组时各处理组的样本含量相等,也可以按1:2或1:3进行分组。通常在样本含量总数不变的情况下,各组样本含量相等时的设计其统计分析效能最高。

由于研究设计、主要研究指标的性质和目标的不同,其计算样本含量的公式有所不同。当主要评价指标为定量资料,且两样本含量相等时两样本均数差异性比较的样本含量估计原理与主要计算公式:

(1)单侧检验时:

(2)双侧检验时:

公式中δ为两样本均数之差;S样本标准差;t1-α、t1-β、t1-α/2都是自由度(n1 +n2 -2)下的分位数,在n1和n2求出之前,t1-α、t1-β、t1-α/2都无法确定,需要用迭代法解方

当我们进行个独立样本均数比较样本量的大小对结果具有一定的影响。较大的样本量通常能够提供更加可靠和准确的结果。 首先,较大的样本量能够降低抽样误差。抽样误差是由于样本选择引起的统计量与总体参数值之间的差异。当样本量较小,由于样本随机性,其所代表的总体参数值可能存在较大的偏差。而当样本量增大,抽样误差减小,所得到的样本均值更加接近总体均值,因此对总体均数比较结果更加可靠。 其次,较大的样本量能够提高统计推断的准确性。在进行个独立样本均数比较,我们通常会使用统计检验方法来得出结论。常用的方法包括t检验和方差分析等。这些方法对样本量有一定的要求,较小的样本量可能导致统计检验的结果不稳定,而较大的样本量则能够提供更加准确和可靠的结果。 此外,较大的样本量还能够增强研究的统计功效。统计功效是指研究能够检测到真实效应的概率。当样本量较小,功效较低,可能无法检测到真实的差异。而当样本量增大,研究的统计功效也随之增加,可以更好地检测到样本间的差异。 综上所述,较大的样本量个独立样本均数比较具有重要意义。它能够降低抽样误差、提高统计推断的准确性以及增强研究的统计功效,从而得到更加可靠和准确的比较结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值