医学统计教程|PASS实现完全随机设计样本含量相等时两均数比较的样本量估计

文章介绍了完全随机设计(也称作成组设计)在医学研究中的应用,特别是如何利用PASS15软件来计算两样本含量相等时两均数比较的样本含量。在给定的降压药疗效比较例子中,通过设定检验效能和显著性水平,软件计算得出每组需要64例病人,总共128例的样本量需求。
摘要由CSDN通过智能技术生成

将同质的实验对象随机地分配到研究因素各水平所对应的处理组,进行处理并观察,或从不同特征的总体中随机抽样,并对样本进行对比观察的设计方法,我们称之为完全随机设计(completely randomized design),又称为成组设计(grouped design),是医学研究中使用最广泛的设计方法之一。

在随机化分组过程中,各处理组的分组概率可以相等,也可以不相等。如常见的按1:1进行分组时各处理组的样本含量相等,也可以按1:2或1:3进行分组。通常在样本含量总数不变的情况下,各组样本含量相等时的设计其统计分析效能最高。

由于研究设计、主要研究指标的性质和目标的不同,其计算样本含量的公式有所不同。当主要评价指标为定量资料,且两样本含量相等时两样本均数差异性比较的样本含量估计原理与主要计算公式:

(1)单侧检验时:

(2)双侧检验时:

公式中δ为两样本均数之差;S样本标准差;t1-α、t1-β、t1-α/2都是自由度(n1 +n2 -2)下的分位数,在n1和n2求出之前,t1-α、t1-β、t1-α/2都无法确定,需要用迭代法解方程。

本节主要讲解采用PASS15软件实现完全随机设计两样本含量相等时两均数比较的样本含量估计。

例:某药厂对新研发的降压中成药与标准降压药的疗效比较。已知标准降压药能使血压平均水平下降2kPa,期望降压中成药能平均下降4kPa,降压值的标准差为4kPa。α=0.05(双侧检验),检验效能1-β=0.8时,需要多少病人进行临床试验?

解析:本例是个完全随机设计的研究,其实验因素具有两水平:中成药与标准降压药;主要结局指标是血压下降水平,是连续型变量;目的是进行当两样本含量相等时两样本均数比较(即两均值差异性检验)的样本含量估计。根据题目我们知道了四个参数:①两样本均数之差 δ=μ1-μ2=4-2=2 kPa;②样本标准差 S=4 kPa;③α=0.05(双侧检验);④检验效能 1-β=0.8。

PASS软件样本含量估算的具体步骤:

01 PASS主菜单进入样本含量估算设置界面:

打开PASS15软件,①点击Means菜单并双击或其前面的“+”展开子菜单栏;→②点击Two Independent Means菜单并双击或其前面的“+”展开子菜单栏;→③点击T –Test(Inequality)→④点击Two Sample T-Tests Assuming Equal Variance→弹出 Two Sample T-Tests Assuming Equal Variance 对话框进入完全随机设计两均数比较时的样本含量估计界面,详见操作示意图(图1)。

 

02 PASS样本含量估算参数设置:

①Solve For: Sample Size,首先说明我们本次所求的结果为样本含量;→②Alternative Hypothesis:Two-sided,表明进行双侧检验;→③Power:0.8,表明检验效能为80%;→④Alpha:0.05,表示检验水准为0.05;→⑤Group Allocation:Equal(N1=N2),表明两组样本例数相等(1:1);→⑥Input Type:Difference,指定效应指标的类型,有“Means”和 “Differcnce”两种形式,当选择“Means”时需要输入两样本各自的均数,而“Differcnce”只要输入两样本均数之差值即可,由于本例两样本均数较简单(μ1=2和μ2=4)故选择“Differcnce”;→⑦δ:2,指定两样本均数之差δ,本例δ=μ1-μ2=4-2=2;→⑧σ:4,指定样本标准差S=4;→⑨点击Calculate按钮,完成两样本均数比较的样本含量估算,详见操作示意图(图2)。

 

03 PASS样本含量估算结果:

由图3可知,PASS软件给出的结果主要有:样本含量估算的结果、相关参考文献、样本量估算报告中出现各名词的定义、对计算结果的总结描述以及假定脱落率为20%时所需的样本含量估计结果和其各名词的相关定义。由于脱落率不同研究结果各不相同,故本次不看脱落率为20%的相关结果。

 从结果可知,每组需要样本64例病人,总共需要128例。

 想要了解更多统计教程相关知识,请登录常笑医学网(www.cxmed.cn)医学统计栏目进行查询和学习。

当我们进行个独立样本均数比较样本量的大小对结果具有一定的影响。较大的样本量通常能够提供更加可靠和准确的结果。 首先,较大的样本量能够降低抽样误差。抽样误差是由于样本选择引起的统计量与总体参数值之间的差异。当样本量较小,由于样本随机性,其所代表的总体参数值可能存在较大的偏差。而当样本量增大,抽样误差减小,所得到的样本均值更加接近总体均值,因此对总体均数比较结果更加可靠。 其次,较大的样本量能够提高统计推断的准确性。在进行个独立样本均数比较,我们通常会使用统计检验方法来得出结论。常用的方法包括t检验和方差分析等。这些方法对样本量有一定的要求,较小的样本量可能导致统计检验的结果不稳定,而较大的样本量则能够提供更加准确和可靠的结果。 此外,较大的样本量还能够增强研究的统计功效。统计功效是指研究能够检测到真实效应的概率。当样本量较小,功效较低,可能无法检测到真实的差异。而当样本量增大,研究的统计功效也随之增加,可以更好地检测到样本间的差异。 综上所述,较大的样本量个独立样本均数比较具有重要意义。它能够降低抽样误差、提高统计推断的准确性以及增强研究的统计功效,从而得到更加可靠和准确的比较结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值