一条路径只是一个空间结构——空间中从初始位姿过渡到最终位姿的一个图形。而轨迹是具有特定时间属性的一条路径。例如,从 A A A 到 B B B 是路径,但如果规定了 10 10 10 秒的时间或 2 m ⋅ s − 1 2 m\cdot s^{-1} 2m⋅s−1 的速度,则变成从 A A A 到 B B B 的轨迹。轨迹的一个重要特征是要平滑——位置和姿态随时间流畅地变化。
平滑一维轨迹
我们从时间的标量函数开始讨论。这种函数的重要特征是它的初始值和最终值是确定的,而且函数是光滑的。所谓光滑是指它的低阶时间导数是连续的。通常速度和加速度都必须是连续的,有时加速度的导数或加加速度也需要连续。这种函数的一个常见代表是时间多项式函数。多项式函数容易计算,而且可以方便地提供所需的连续性和边界条件。比较常用的是五次多项式:
S ( t ) = A t 5 + B t 4 + C t 3 + D t 2 + E t + F S(t)=At^5+Bt^4+Ct^3+Dt^2+Et+F S(t)=At5+Bt4+Ct3+Dt2+Et+F其中时间 t ∈ [ 0 , T ] t\in [0,T] t∈[0,T]。其一阶和二阶导数也是光滑的多项式:
S ˙ ( t ) = 5 A t 4 + 4 B t 3 + 3 C t 2 + 2 D t + E S ¨ ( t ) = 20 A t 3 + 12 B t 2 + 6 C t + 2 D \begin{array}{c} \dot{S}(t)=5At^4+4Bt^3+3Ct^2+2Dt+E \\[1em] \ddot{S}(t)=20At^3+12Bt^2+6Ct+2D \end{array} S˙(t)=5At4+4Bt3+3Ct2+2Dt+ES