机器人学——2.1-轨迹

本文介绍了机器人轨迹的概念,强调了轨迹的平滑性。一维轨迹通过五次多项式函数进行平滑描述,讨论了速度、加速度的边界条件。此外,针对速度曲线的形状,提出了混合曲线轨迹(梯形轨迹)作为更优选择。多维轨迹则扩展到多个运动轴,利用类似的方法实现向量形式的平滑运动规划。
摘要由CSDN通过智能技术生成

一条路径只是一个空间结构——空间中从初始位姿过渡到最终位姿的一个图形。而轨迹是具有特定时间属性的一条路径。例如,从 A A A B B B 是路径,但如果规定了 10 10 10 秒的时间或 2 m ⋅ s − 1 2 m\cdot s^{-1} 2ms1 的速度,则变成从 A A A B B B 的轨迹。轨迹的一个重要特征是要平滑——位置和姿态随时间流畅地变化。

平滑一维轨迹

我们从时间的标量函数开始讨论。这种函数的重要特征是它的初始值和最终值是确定的,而且函数是光滑的。所谓光滑是指它的低阶时间导数是连续的。通常速度和加速度都必须是连续的,有时加速度的导数或加加速度也需要连续。这种函数的一个常见代表是时间多项式函数。多项式函数容易计算,而且可以方便地提供所需的连续性和边界条件。比较常用的是五次多项式:
S ( t ) = A t 5 + B t 4 + C t 3 + D t 2 + E t + F S(t)=At^5+Bt^4+Ct^3+Dt^2+Et+F S(t)=At5+Bt4+Ct3+Dt2+Et+F其中时间 t ∈ [ 0 , T ] t\in [0,T] t[0,T]。其一阶和二阶导数也是光滑的多项式:
S ˙ ( t ) = 5 A t 4 + 4 B t 3 + 3 C t 2 + 2 D t + E S ¨ ( t ) = 20 A t 3 + 12 B t 2 + 6 C t + 2 D \begin{array}{c} \dot{S}(t)=5At^4+4Bt^3+3Ct^2+2Dt+E \\[1em] \ddot{S}(t)=20At^3+12Bt^2+6Ct+2D \end{array} S˙(t)=5At4+4Bt3+3Ct2+2Dt+ES

在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的行业,如2004年德国制造业中每1万名工人中拥有机器人的数量为162台,而在汽车制造业中每1万名工人中拥有机器人的数量则为1140台;意大利的这一数值更能说明问题,2004年意大利制造业中每1万名工人中拥有辅助操作的机器人数量为123台,而在汽车制造业中每1万名工人中机器人的拥有数量则高达1600台。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值