【PCL】教程 resample.cpp pcl::MovingLeastSquares平滑点云数据

8bf788b1c2285cd30b27fd2d796e98a8.png

[done, 416.514 ms : 397 points]
Available dimensions: x y z normal_x normal_y normal_z curvature

bun0.pcd

eb81e90ba20de8487d1b499489e4dee7.png

[done, 609.814 ms : 397 points]
Available dimensions: x y z normal_x normal_y normal_z curvature

bun0-mls.pcd

这段代码演示了如何使用PCL(Point Cloud Library,点云库)对点云数据进行平滑处理。主要步骤如下:

  1. 包含必要的头文件,用于点云处理、文件输入输出、搜索结构的建立以及表面平滑。

  2. 定义主函数main()

  3. 加载点云文件到pcl::PointCloud<pcl::PointXYZ>::Ptr对象,这里假定文件名为"bun0.pcd",这是一个常见的测试文件。

  4. 创建一个KD树(pcl::search::KdTree<pcl::PointXYZ>),用于之后的邻域搜索。

  5. 创建一个pcl::PointCloud<pcl::PointNormal>对象,用于存储平滑后带有法线信息的点云数据

  6. 使用pcl::MovingLeastSquares类创建一个平滑处理的对象mls,输入点云类型为pcl::PointXYZ,输出点云类型为pcl::PointNormal

  7. 设置mls对象的参数:

  • 计算法线:mls.setComputeNormals(true);

  • 输入点云:mls.setInputCloud(cloud);

  • 设置多项式阶数:mls.setPolynomialOrder(2);,这里选择2阶多项式。

  • 设置搜索方法:mls.setSearchMethod(tree);,使用之前创建的KD树。

  • 设置搜索半径:mls.setSearchRadius(0.03);,这决定了平滑处理的局部邻域大小。

进行平滑处理:mls.process(mls_points);,处理结果存储在mls_points中。

将处理后的点云数据保存到文件"bun0-mls.pcd"。

总结而言,这段代码通过移动最小二乘法,对输入的点云数据"bun0.pcd"进行平滑处理,并将平滑后带有法线信息的点云数据保存为"bun0-mls.pcd"。这种处理方法在点云数据的降噪、特征保持等方面非常有用。

#include <pcl/point_types.h> // 引入PCL库中定义的点类型
#include <pcl/io/pcd_io.h> // 引入PCL库中的PCD文件输入输出功能
#include <pcl/search/kdtree.h> // 引入PCL库中对KD树搜索的支持
#include <pcl/surface/mls.h> // 引入PCL库中的移动最小二乘表面平滑方法(MLS)


int
main ()
{
  // 加载输入文件到一个适当类型的点云中
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  // 加载bun0.pcd文件 - 此文件应与PCL档案一起提供在测试中
  pcl::io::loadPCDFile ("bun0.pcd", *cloud);


  // 创建一个KD树
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);


  // 输出的点类型是PointNormal,用于存储由MLS计算得到的法线
  pcl::PointCloud<pcl::PointNormal> mls_points;


  // 初始化对象(第二个点类型是法线,即使未使用)
  pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
 
  mls.setComputeNormals (true); // 设置计算法线


  // 设置参数
  mls.setInputCloud (cloud); // 设置输入点云
  mls.setPolynomialOrder (2); // 设置多项式的阶数
  mls.setSearchMethod (tree); // 设置搜索方法为KD树
  mls.setSearchRadius (0.03); // 设置搜索半径


  // 重构
  mls.process (mls_points); // 执行MLS表面平滑算法


  // 保存输出
  pcl::io::savePCDFile ("bun0-mls.pcd", mls_points); // 保存平滑处理后的点云
}

代码是一个使用PCL(Point Cloud Library)库进行点云表面平滑处理的示例。它主要通过移动最小二乘(Moving Least Squares, MLS)方法对点云数据进行平滑处理,以提高数据质量。过程包括加载点云文件、创建KD树以优化搜索过程、设置MLS算法参数、执行平滑处理、并将处理后的结果保存到新的PCD文件中。这种表面平滑处理在三维数据处理、三维重建和视觉特效等领域有广泛的应用。

pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;

7644c6ccc29fb95d25f7f4856aa1f3e4.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值