【Gradio】使用 Gradio 进行表格数据科学工作流

简介

表格数据科学是机器学习中最广泛使用的领域,涉及的问题从客户细分到流失预测不等。在表格数据科学工作流的各个阶段,与利益相关者或客户沟通您的工作可能会很麻烦;这阻止了数据科学家专注于重要的事情,如数据分析和模型构建。数据科学家可能会花费数小时构建一个仪表板,该仪表板接收dataframe 并返回plots图表,或返回数据集中的群集的预测或图表。在本指南中,我们将介绍如何使用 gradio 来改进您的数据科学工作流程。我们还将讨论如何使用 gradio 和 skops 仅用一行代码构建接口!

 先决条件 

确保您已经安装了 gradio Python 包。

让我们创建一个简单的界面! 

我们将看看如何创建一个简单的 UI,根据产品信息预测故障。

# 导入gradio、pandas、joblib和datasets库
import gradio as gr
import pandas as pd
import joblib
import datasets


# 创建Gradio的输入与输出界面,输入是一个数据表格,输出是预测结果的数据表格
inputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(4, "dynamic"), label="输入数据", interactive=1)]
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="预测结果", headers=["故障数"])]


# 从“model.pkl”加载预训练的模型
model = joblib.load("model.pkl")


# 从datasets库中加载样例数据集“merve/supersoaker-failures”
df = datasets.load_dataset("merve/supersoaker-failures")
df = df["train"].to_pandas()


# 定义预测函数,将从Gradio接口接收到的输入数据用预训练的模型进行预测
def infer(input_dataframe):
    return pd.DataFrame(model.predict(input_dataframe))


# 创建Gradio界面,设置函数、输入与输出方式,并给出样例数据
gr.Interface(fn=infer, inputs=inputs, outputs=outputs, examples=[[df.head(2)]]).launch()

让我们分解上面的代码。

  • fn :一个推理函数,它接受输入数据框并返回预测。

  • inputs :我们用来取输入的组件。我们将输入定义为一个有 2 行 4 列的数据框,最初它看起来像一个空的数据框,有上述的形状。当 row_count 设置为 dynamic 时,你不必依赖于你输入到预定义组件的数据集。

  • outputs :存储输出的数据框组件。这个 UI 可以取单个或多个样本进行推断,并且在一列中为每个样本返回 0 或 1,所以我们在上面给 row_count 为 2 和 col_count 为 1。 headers 是一个由数据框的表头名称组成的列表。

  • examples :你可以通过拖放 CSV 文件,或者通过示例传递一个 pandas 数据框,其表头将被界面自动获取。

我们现在将创建一个最简数据可视化仪表板的例子。您可以在相关空间中找到一个更全面的版本。

419e4f3497dca53ef267003beb084c02.png

# 导入gradio、pandas、datasets、seaborn和matplotlib.pyplot库
import gradio as gr
import pandas as pd
import datasets
import seaborn as sns
import matplotlib.pyplot as plt


# 从datasets库中加载样例数据集“merve/supersoaker-failures”,并把空值所在行删除
df = datasets.load_dataset("merve/supersoaker-failures")
# 将"datasets"库加载的数据集转换为pandas的DataFrame格式
df = df["train"].to_pandas()
df.dropna(axis=0, inplace=True)


# 定义函数来创建散点图、条形图和热力图
def plot(df):
  # 创建散点图
  plt.scatter(df.measurement_13, df.measurement_15, c = df.loading,alpha=0.5)
  plt.savefig("scatter.png")
  # 创建条形图
  df['failure'].value_counts().plot(kind='bar')
  plt.savefig("bar.png")
  # 创建热力图
  sns.heatmap(df.select_dtypes(include="number").corr())
  plt.savefig("corr.png")
  # 指定结果图像的文件路径
  plots = ["corr.png","scatter.png", "bar.png"]
  return plots


# 创建Gradio的输入和输出格式,输入为数据框,输出为图像画廊
inputs = [gr.Dataframe(label="Supersoaker生产数据")]
outputs = [gr.Gallery(label="分析仪表板", columns=(1,3))]


# 使用Gradio创建界面,并启动
gr.Interface(plot, inputs=inputs, outputs=outputs, examples=[df.head(100)], title="Supersoaker故障分析仪表板").launch()

ea27c31b1537904610202b9e0958ff01.png

38318d999be6693328dad1a4d2ea8311.png

这段代码的作用是创建了一个交互式的分析仪表板,它可以直观地展示数据集“merve/supersoaker-failures”的散点图、条形图和热力图,使用户能更直观地了解数据情况,并帮助用户进行数据分析。

我们将使用训练模型时用的同一数据集,但这次我们将制作一个仪表板来可视化它。

  • fn :将根据数据创建图表的函数。

  • inputs :我们使用了上面相同的 Dataframe 组件。

  • outputs : Gallery 组件用于保持我们的可视化。

  • examples :我们将以数据集本身为例。

使用 skops  一行代码即可轻松加载表格数据接口

skops 是建立在 huggingface_hub 和 sklearn 之上的库。随着最近 gradio 对 skops 的集成,您可以用一行代码构建表格数据接口!

# 导入Gradio库,用于构建Web GUI
import gradio as gr


# title和description是可选的,用于定义Web界面的标题和描述信息
title = "Supersoaker故障产品预测"
description = "该模型预测Supersoaker生产线上的故障。你可以拖拽数据集的任何部分,或者在下方的数据框组件中按需编辑值。"


# 使用Gradio的load方法加载一个名为“huggingface/scikit-learn/tabular-playground”的模型
# 并设置了标题和描述。这个模型是从Hugging Face Hub上获取的,用于表格数据的预测
gr.load("huggingface/scikit-learn/tabular-playground", title=title, description=description).launch()

使用 skops 推送到 Hugging Face Hub 的 sklearn 模型包括一个 config.json 文件,其中包含带有列名的示例输入,以及正在解决的任务(可以是 tabular-classification 或 tabular-regression )。根据任务类型, gradio 构建 Interface 并使用列名和示例输入来构建它。您可以参考 skops 关于在 Hub 上托管模型的文档,了解如何使用 skops 将模型推送到 Hub。https://skops.readthedocs.io/en/v0.9.0/auto_examples/index.html

<think>嗯,用户想了解Gradio使用方法或教程。首先,我需要回顾一下Gradio的基本概念和主要功能。Gradio是一个用于快速构建机器学习模型或数据科学演示的Python库,它允许用户通过简单的接口创建Web应用。根据提供的引用内容,用户可能需要从安装、基本组件到高级功能的逐步指导。 首先,用户可能需要安装Gradio。引用[1]提到安装和运行是实战部分的第一部分,所以应该先指导用户如何安装。安装命令应该是pip install gradio。安装完成后,运行一个简单的示例程序,比如“Hello World”,能够帮助用户快速上手。引用[2]中提到了输入输出组件的示例,这里可能需要展示一个简单的代码,比如使用Interface和文本输入输出。 接下来,用户可能需要了解Gradio的核心组件,比如Interfaces、Blocks和Components。引用[3]详细说明了Interface的三个必需参数:fn、inputs和outputs。需要解释每个参数的作用,并给出示例代码,比如一个加法函数或图像分类模型。 然后,用户可能对高级功能感兴趣,比如热重载、Gradio-Lite、Client和数据科学相关的表格渲染。引用[1]提到热重载技术,这在开发过程中非常有用,应该解释如何使用--reload参数来启用。同时,Gradio的部署方法,如通过share参数生成公共链接,或者部署到Hugging Face Spaces,也是用户可能关心的内容。 此外,用户可能想知道如何构建更复杂的布局,这时候Blocks组件就派上用场了。需要提供一个Blocks的示例,展示如何组合多个输入输出组件,并添加Markdown说明,提高可读性。 最后,生成相关问题时要覆盖用户可能遇到的进阶需求,比如组件定制、部署优化、与机器学习框架的整合,以及处理大数据量时的性能问题。这些问题可以帮助用户深入学习和解决实际应用中的挑战。 需要注意的是,回答中引用的部分要正确对应引用标记,比如引用[1]、[2]、[3]分别对应安装运行、第一个应用和Interface参数的内容。确保每个引用标识自然出现在相关段落的末尾,不破坏回答的流畅性。 总结来说,回答需要结构清晰,分步骤介绍安装、基本用法、核心组件、高级功能,并提供示例代码和相关问题,确保用户能够逐步掌握Gradio使用方法,并激发他们进一步探索的兴趣。</think># Gradio使用教程与示例 ## 一、安装与运行 使用pip安装Gradio(推荐Python 3.7+环境): ```bash pip install gradio ``` 验证安装成功: ```python import gradio as gr print(gr.__version__) ``` 通过热重载功能实现实时开发调试: ```bash gradio app.py --reload # 文件保存自动刷新页面[^1] ``` ## 二、核心组件使用 ### 1. Interface基础组件 构建文本处理示例(输入文本返回长度): ```python def text_length(text): return len(text) demo = gr.Interface( fn=text_length, inputs=gr.Textbox(lines=2, placeholder="输入文本"), outputs=gr.Number(label="字符数"), title="文本长度计算器" ) demo.launch() ``` ![示意图](https://gradio.app/assets/img/demo/textbox_highlighted.710a87e6.png)[^2] ### 2. 图像分类示例 ```python import tensorflow as tf model = tf.keras.applications.MobileNetV2() def classify_image(img): img = img.reshape((1, 224, 224, 3)) prediction = model.predict(img)[0] return {labels[i]: float(prediction[i]) for i in range(1000)} gr.Interface( fn=classify_image, inputs=gr.Image(shape=(224,224)), outputs=gr.Label(num_top_classes=3), examples=["dog.jpg", "cat.png"] ).launch() ``` ## 三、进阶功能 ### 1. Blocks自定义布局 ```python with gr.Blocks() as demo: gr.Markdown("## 复合输入表单") with gr.Row(): text = gr.Textbox(label="文本输入") slider = gr.Slider(0,100) with gr.Row(): img = gr.Image() output = gr.Label() btn = gr.Button("提交") btn.click(fn=process_input, inputs=[text, slider, img], outputs=output) demo.launch() ``` ### 2. 部署与共享 生成临时公共链接: ```python demo.launch(share=True) # 72小时有效链接 ``` 部署到Hugging Face Spaces: ```bash # 创建requirements.txt包含gradio依赖 git push origin main # 自动构建Web服务 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值