1.文本编码(类似准备mnist图像数据矩阵)
2.构造网络,损失函数是关于query-doc的cos相似度的
3.跑session,数据按batch送入网络
实验数据
搜索query \t 被点击doc-title \t label=1
搜索query \t 被点击条目的预测相似query \t label=0
支 支付宝官网 1
支 支气管炎的症状 0
支 支付宝 0
支 支原体感染 0
支 支付宝客服电话多少 0
东风风行x3 东风风行X3 1
东风风行x3 东风风行x3多少钱 0
东风风行x3 东风风行x3报价及图片 0
构造dssm网络图及run.sess训练
class Graph:
def __init__(self):
self.p = tf.placeholder(dtype=tf.int32, shape=(None, args.seq_length), name='p')
self.h = tf.placeholder(dtype=tf.int32, shape=(None, args.seq_length), name='h')
self.y = tf.placeholder(dtype=tf.int32, shape=None, name='y')
self.keep_prob = tf.placeholder(dtype=tf.float32, name='drop_rate')
self.embedding = tf.get_variable(dtype=tf.float32, shape=(args.vocab_size, args.char_embedding_size), name='embedding') # 完整的嵌入张量
self.forward()
def dropout(self, x):
return tf.nn.dropout(x, keep_prob=self.keep_prob)
def fully_connect(self, x):
x = tf.layers.dense(x, 128, activation='tanh') # 全连接层
x = self.dropout(x)
x = tf.layers.dense(x, 256, activation='tanh')
x = self.dropout(x)
x = tf.layers.dense(x, 128, activation='tanh')
x = self.dropout(x)
x = tf.reshape(x, shape=(-1, x.shape[1] * x.shape[2])) #
return x
@staticmethod
def cosine(p, h):
p_norm = tf.norm(p, axis=1, keepdims=True)
h_norm = tf.norm(h, axis=1, keepdims=True)
cosine = tf.reduce_sum(tf.multiply(p, h), axis=1, keepdims=True) / (p_norm * h_norm)
return cosine
def forward(self):
p_embedding = tf.nn.embedding_lookup(self.embedding, self.p)
h_embedding = tf.nn.embedding_lookup(self.embedding, self.h)
p_context = self.fully_connect(p_embedding)
h_context = self.fully_connect(h_embedding)
pos_result = self.cosine(p_context, h_context)
neg_result = 1 - pos_result
logits = tf.concat([neg_result, pos_result], axis=1)
self.train(logits)
def train(self, logits):
y = tf.one_hot(self.y, args.class_size) # onehot矩阵维度:y的第一个维度*2列
loss = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)
self.loss = tf.reduce_mean(loss)
self.train_op = tf.train.AdamOptimizer(args.learning_rate).minimize(self.loss)
prediction = tf.argmax(logits, axis=1) # neg类 预测0
correct_prediction = tf.equal(tf.cast(prediction, tf.int32), self.y)
self.acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
from dssm.graph import Graph
import tensorflow as tf
from utils.load_data import load_char_data
from dssm import args
p, h, y = load_char_data('input/train_4neg_20180929.csv', data_size=None) # 做成文本字粒度的index编码,整个文本编码完的长度 做了padding
p_eval, h_eval, y_eval = load_char_data('input/vali_4neg_20180929.csv', data_size=None)
p_holder = tf.placeholder(dtype=tf.int32, shape=(None, args.seq_length), name='p')
h_holder = tf.placeholder(dtype=tf.int32, shape=(None, args.seq_length), name='h')
y_holder = tf.placeholder(dtype=tf.int32, shape=None, name='y')
dataset = tf.data.Dataset.from_tensor_slices((p_holder, h_holder, y_holder))
dataset = dataset.batch(args.batch_size).repeat(args.epochs)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
model = Graph()
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9
with tf.Session(config=config)as sess:
sess.run(tf.global_variables_initializer())
sess.run(iterator.initializer, feed_dict={p_holder: p, h_holder: h, y_holder: y}) # iterator.initializer 先对迭代器初始化
steps = int(len(y) / args.batch_size) # 每个epoch多少个batch
for epoch in range(args.epochs):
for step in range(steps):
p_batch, h_batch, y_batch = sess.run(next_element)
_, loss, acc = sess.run([model.train_op, model.loss, model.acc],
feed_dict={model.p: p_batch, model.h: h_batch, model.y: y_batch, model.keep_prob: args.keep_prob})
if step % 50 == 0:
print('epoch:', epoch, ' step:', step, ' loss: ', loss, ' acc:', acc)
loss_eval, acc_eval = sess.run([model.loss, model.acc],
feed_dict={model.p: p_eval, model.h: h_eval, model.y: y_eval, model.keep_prob: 1})
print('loss_eval: ', loss_eval, ' acc_eval:', acc_eval)
print('\n')
saver.save(sess, f'../output/dssm/dssm_{epoch}.ckpt')
实验代码参考