自动控制原理

参考:DR_CAN

相同领域的文章:

1.闭环系统

在这里插入图片描述

  化简: 闭环 → \to 开环
( U − X H ) D G = X (U-XH)DG=X (UXH)DG=X
X = D G 1 + H D G U X=\frac{DG}{1+HDG}U X=1+HDGDGU
在这里插入图片描述

2.稳定性分析

  稳定性是控制的基础,在这个基础上才有瞬态分析和稳态分析,接着才是控制,最后是优化。
在这里插入图片描述


在这里插入图片描述

  在 A , B , C A,B,C A,B,C三个点放置小球,小球都能保持静止不动,这三个点称为平衡点,即位移 x ( t ) x(t) x(t)的变化为零,用数学表达
d x d t = 0 \frac{\mathrm{d} x}{\mathrm{d} t} =0 dtdx=0

   A A A点无摩擦,小球偏离平衡点,随着时间增加,会在平衡点附近振荡。

   B B B点小球偏离平衡点,随着时间增加,会远离平衡点。

   C C C点有摩擦,小球偏离平衡点时,随着时间增加,最终会停在平衡点。

   A A A点临界稳定, B B B点不稳定, C C C点稳定,分别用数学描述
lim ⁡ t → ∞ ∣ x ( t ) ∣ < M \lim_{t \to \infty} |x(t)| < M tlimx(t)<M
lim ⁡ t → ∞ x ( t ) → ∞ \lim_{t \to \infty} x(t) \to \infty tlimx(t)
lim ⁡ t → ∞ x ( t ) → 0 \lim_{t \to \infty} x(t) \to 0 tlimx(t)0

  对于 A A A点,如果输入有界(Bounded-Input),则输出也是有界的(Bounded-output),简称BIBO稳定。


明确分析对象
倒立摆系统
在这里插入图片描述

   A A A点也是平衡点,当小球偏离平衡点 A A A,小球无法回到 A A A点,因此 A A A点是一个不稳定的平衡点。

   B B B点是平衡点,当小球偏离平衡点 B B B,无阻力时系统达到临界稳定,有阻力时系统达到稳定,因此 B B B点是一个稳定的平衡点。

  我们希望在 A A A点也能保持平衡,就需要引入外力,可以在单摆两边各放一个吹风机,吹风机根据小球偏离的角度决定吹风的风量,这样就形成了一个反馈系统,其框图如下
在这里插入图片描述


  在研究系统的稳定性时,一般给系统输入一个单位冲激响应 δ ( t ) \delta(t) δ(t), L [ δ ( t ) ] = 1 \mathcal{L}[\delta(t)]=1 L[δ(t)]=1,因此稳定性的分析就是研究开环传递函数或闭环传递函数本身,即
X ( s ) = U ( s ) G ( s ) = 1 ⋅ G ( s ) X(s)=U(s)G(s)=1\cdot G(s) X(s)=U(s)G(s)=1G(s)

  传递函数
G ( s ) = D ( s ) N ( s ) G(s)=\frac{D(s)}{N(s)} G(s)=N(s)D(s)

  • N ( s ) = 0 N(s)=0 N(s)=0
    极点
    s 1 = p 1 s 2 = p 2 ⋮ s_1=p_1\\ s_2=p_2\\ \quad \vdots s1=p1s2=p2

  • G ( s ) = 0 G(s)=0 G(s)=0
    零点
    s 1 = z 1 s 2 = z 2 ⋮ s_1=z_1\\ s_2=z_2\\ \quad \vdots s1=z1s2=z2


例1

  传递函数
G ( s ) = 1 s 2 + s − 6 = 1 ( s + 3 ) ( s − 2 ) G(s)=\frac{1}{s^2+s-6}=\frac{1}{(s+3)(s-2)} G(s)=s2+s61=(s+3)(s2)1
p 1 = − 3 p 2 = 2 p_1=-3\\ p_2=2 p1=3p2=2

  输入为冲激响应, L [ δ ( t ) ] = 1 \mathcal{L}[\delta(t)]=1 L[δ(t)]=1,输出
X ( s ) = 1 ⋅ G ( s ) = 1 ( s + 3 ) ( s − 2 ) = C 1 s + 3 + C 2 s − 2 \begin{aligned} X(s) &=1\cdot G(s)\\ &=\frac{1}{(s+3)(s-2)}\\ &=\frac{C_1}{s+3}+\frac{C_2}{s-2} \end{aligned} X(s)=1G(s)=(s+3)(s2)1=s+3C1+s2C2

  拉普拉斯逆变换
x ( t ) = L [ X ( s ) ] = C 1 e − 3 t + C 2 e 2 t x(t)=\mathcal{L}[X(s)]=C_1e^{-3t}+C_2e^{2t} x(t)=L[X(s)]=C1e3t+C2e2t
  上式第一项收敛,第二项不收敛,因为这是线性时不变系统LTI,LTI满足叠加原理,所以输出响应是不收敛的(发散),系统不稳定。


例2

  传递函数
G ( s ) = 1 s 2 + 2 s + 2 G(s)=\frac{1}{s^2+2s+2} G(s)=s2+2s+21
  系统的特征方程
s 2 + 2 s + 2 = 0 s^2+2s+2=0 s2+2s+2=0
p 1 = − 1 + i p 2 = − 1 − i p_1=-1+i\\ p_2=-1-i p1=1+ip2=1i

  微分方程的通解
x ( t ) = C 1 e − ( − 1 + i ) t + C 2 e ( − 1 − i ) t = e − t ( C 1 e i t + C 2 e − i t ) = C 3 e − t sin ⁡ ( t + ϕ ) \begin{aligned} x(t) & = C_1e^{-(-1+i)t}+C_2e^{(-1-i)t}\\ & = e^{-t}\left ( C_1e^{it}+C_2e^{-it} \right )\\ & = C_3 e^{-t} \sin (t+\phi) \end{aligned} x(t)=C1e(1+i)t+C2e(1i)t=et(C1eit+C2eit)=C3etsin(t+ϕ)
  因此输出响应是震荡衰减的,系统稳定。若极点的实部为零,输出响应是震荡的,系统为临界稳定。若极点的实部大于0,输出响应是震荡发散的,系统不稳定。如下图所示。

  综述,若要求系统稳定,则需设计 D ( s ) D(s) D(s)使得极点落在左半平面,这也称为极点配置,这就是经典控制理论的核心设计思路了,在现代控制理论中,我们研究的是状态矩阵的特征值,而这个特征值就对应经典控制理论的极点。
在这里插入图片描述

3.系统分析实例(上)

项目名称:燃烧卡路里

  人类的体重的变化和热量有关,热量和人体相关的单位为kCal, E I E_I EI热量摄入, E e E_e Ee热量支出,热量的净输入为
E N = E I − E e E_N=E_I-E_e EN=EIEe

  人体体重和热量的关系
1 k g ≈ 7000 k C a l 1kg \approx7000kCal 1kg7000kCal

  体重微分方程
d m d t = E I − E e 7000 \frac{\mathrm{d} m}{\mathrm{d} t} =\frac{E_I-E_e}{7000} dtdm=7000EIEe

E I E_I EI: 饮食摄入
E e : E a + α P , E a E_e:E_a+\alpha P,E_a Ee:Ea+αP,Ea为额外运动消耗, α P \alpha P αP为日常消耗

其中,P为基础代谢率, α = { 1.3 , 轻 体 力 1.5 , 中 体 力 1.9 , 重 体 力 \alpha=\begin{cases}1.3,轻体力\\ 1.5,中体力\\ 1.9,重体力\end{cases} α=1.3,1.5,1.9,

Mifflin St. Jeor
P = 10 m + 6.25 h − 5 a + s P=10m+6.25h-5a+s P=10m+6.25h5a+s
m:体重
h:身高
a:年龄
s:调整系数,因性别而异,男s=5,女s=-161


  体重微分方程
d m d t = E I − E e 7000 = E I − E a − α ( 10 m + 6.25 h − 5 a + s ) 7000 = E I − E a − 10 α m − α C 7000 \begin{aligned} \frac{\mathrm{d} m}{\mathrm{d} t} & = \frac{E_I-E_e}{7000}\\ & = \frac{E_I-E_a - \alpha (10m+6.25h-5a+s)}{7000}\\ & = \frac{E_I-E_a - 10\alpha m-\alpha C}{7000}\\ \end{aligned} dtdm=7000EIEe=7000EIEaα10m+6.25h5a+s=7000EIEa10αmαC

输入: u = E I − E a − α C u=E_I-E_a -\alpha C u=EIEaαC
输出:m

  拉普拉斯变换
L [ d m d t ] = L [ u − 10 α m 7000 ] \mathcal{L}\left [ \frac{\mathrm{d} m}{\mathrm{d} t} \right ] = \mathcal{L}\left [ \frac{u- 10\alpha m}{7000} \right ] L[dtdm]=L[7000u10αm]
s M ( s ) = 1 7000 [ U ( s ) − 10 α M ( s ) ] sM(s)=\frac{1}{7000}\left [ U(s)-10\alpha M(s) \right ] sM(s)=70001[U(s)10αM(s)]
7000 s M ( s ) + 10 α M ( s ) = U ( s ) 7000sM(s)+10\alpha M(s)=U(s) 7000sM(s)+10αM(s)=U(s)

  传递函数
G ( s ) = M ( s ) U ( s ) = 1 7000 s + 10 α = 1 7000 10 α 7000 + s \begin{aligned} G(s) & = \frac{M(s)}{U(s)} \\ & = \frac{1}{7000s+10\alpha}\\ & = \frac{\frac{1}{7000} }{\frac{10\alpha}{7000}+s }\\ \end{aligned} G(s)=U(s)M(s)=7000s+10α1=700010α+s70001

  极点 s = − 10 α 7000 < 0 s=-\frac{10\alpha}{7000}<0 s=700010α<0,体重最终会稳定。

case no. 性别 体重 身高 年龄 热量摄入 消耗系数 额外热量消耗 说明
1 70 175 20 2500 1.3 0 宅男
2 70 175 20 2100 1.3 0 宅男
3 70 175 20 2500 1.3 500 慢跑一小时

在这里插入图片描述

在这里插入图片描述

4.系统分析实例(下)

项目名称:燃烧卡路里

增加反馈控制-比例控制

  体重微分方程
d m d t = E I − E e 7000 = E I − E a − α ( 10 m + 6.25 h − 5 a + s ) 7000 \begin{aligned} \frac{\mathrm{d} m}{\mathrm{d} t} & = \frac{E_I-E_e}{7000}\\ & = \frac{E_I-E_a - \alpha (10m+6.25h-5a+s)}{7000}\\ \end{aligned} dtdm=7000EIEe=7000EIEaα10m+6.25h5a+s

输入: u = E I − E a u=E_I-E_a u=EIEa
输出:m
扰动: d = − α C d=-\alpha C d=αC

d m d t = u − 10 α m + d 7000 \begin{aligned} \frac{\mathrm{d} m}{\mathrm{d} t} & = \frac{u- 10\alpha m+d}{7000}\\ \end{aligned} dtdm=7000u10αm+d

  拉普拉斯变换
s M ( s ) = U ( s ) − 10 α M ( s ) + D ( s ) 7000 sM(s)=\frac{U(s)- 10\alpha M(s)+D(s)}{7000} sM(s)=7000U(s)10αM(s)+D(s)

  传递函数
M ( s ) U ( s ) + D ( s ) = 1 7000 s + 10 α \frac{M(s)}{U(s)+D(s)}=\frac{1}{7000s+10\alpha} U(s)+D(s)M(s)=7000s+10α1

  开环传递函数框图
在这里插入图片描述


  如果想减到某一体重,应该怎么做?引入反馈环节,闭环传递函数框图如下
在这里插入图片描述

  • 比例控制器 u = K p e u=K_p e u=Kpe
    输入是误差e的比例系数

[ ( R − M ) K p + D ] 1 7000 s + 10 α = M [(R-M)K_p+D]\frac{1}{7000s+10\alpha}=M [(RM)Kp+D]7000s+10α1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值