信息熵和方差都被用作不确定性的度量,之间理应存在一定的科学关系
本文研究随机变量X的熵H (X)与方差σ2 之间的关系。所得结论 :对连续型随机变量X ,熵H(X)随标准差σ的增加而增加 ,对二维连续型随机变量 (X ,Y) ,联合熵H(X ,Y)随X、Y的标准差之积的增加而增加 ;对离散型随机变量X ,熵与方差无关。这一性质 ,揭示了连续型随机变量与离散型变量的本质差异。
信息熵和方差都被用作不确定性的度量,之间理应存在一定的科学关系
本文研究随机变量X的熵H (X)与方差σ2 之间的关系。所得结论 :对连续型随机变量X ,熵H(X)随标准差σ的增加而增加 ,对二维连续型随机变量 (X ,Y) ,联合熵H(X ,Y)随X、Y的标准差之积的增加而增加 ;对离散型随机变量X ,熵与方差无关。这一性质 ,揭示了连续型随机变量与离散型变量的本质差异。