自然指数函数e^x与欧拉数e (下)

 自然指数函数e^x与欧拉数e

 Part I: 从幂级数到欧拉数e

        上一篇文章停在了“应该存在一个b,使得指数函数b^x在x=0处的导数为1。且该指数函数在任意一处的导数都等于当前位置的函数值”。根据前面所知道的,可以用数学公式列出以下一些已知条件:

f(x)=b^{x} (式1:表示原函数)

 f(0)=b^{0}=1式2:表示任何指数函数的0次幂为1)

f(0)'=1式3:表示函数在x=0处的导数为1)

f(x)'=f(x) (式4:表示函数在任意处的导数等于y)

        这样看来我们只需根据(式4)求解微分方程即可,但这样一来就会直接引出lnx,即,以e为底的对数函数log{_{e}}^{x}。但实际上这个时候我并不知道e,这让我很苦恼。因为,我所看到的数学书里面基本上都是先讲对数,再讲lnx,然后再讲对数函数的反函数,一直到引出e^x和e。所以,我在这里试图改用另一种方法来给出e。

        已知我要求的目标函数是f(x)=b^x,现在要基于上面的所有已知条件去构建该函数,使得b的是我们要找的那个数,他能够满足上面四个等式。

第一步:

根据(式2),

f(0)=1

又因为(式4),

f(x)'=f(x)\Rightarrow f(0)'=f(0)

第一步最终得到,

原函数 f(0)=1
导数 f(0)'=1

第二步:

        观察第一步的结果,根据求导法则,明显,常数f(0)=1的导数f(0)'应当为0。要想让f(0)的导数f(0)'等于1,f(0)'还应该补上一个x。使得1+x的导数等于1,即:

原函数 f(0)=1+x
导数 f(0)'=1

 第三步:

        根据(式4)导数f(0)'应该等于f(0),因此,我们要对第二步的结果进行再一次改写,如下:

原函数 f(0)=1+x
导数 f(0)'=1+x

 第四步:

        再次根据函数的求导法则,要想让导数f(0)'等于1+x,f(0)不应是1+x,而是1+x+(x^2)/2。

原函数 f(0)=1+x+x^{2}/2
导数 f(0)'=1+x

 第五步:

        再次根据(式4)导数f(0)'应该等于f(0),重写导数。

原函数 f(0)=1+x+x^{2}/2
导数 f(0)'=1+x+x^{2}/2

 依此类推,反复的修改原函数与导数,最终我们会得到如下的结果:

原函数 f(0)=1+x+x^{2}/2+x^{3}/(2*3)
导数 f(0)'=1+x+x^{2}/2+x^{3}/(2*3)
原函数 f(0)=1+x+x^{2}/2+x^{3}/(2*3)+x^{4}/(2*3*4)
导数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值