自然指数函数e^x与欧拉数e
Part I: 从幂级数到欧拉数e
上一篇文章停在了“应该存在一个b,使得指数函数b^x在x=0处的导数为1。且该指数函数在任意一处的导数都等于当前位置的函数值”。根据前面所知道的,可以用数学公式列出以下一些已知条件:
(式1:表示原函数)
(式2:表示任何指数函数的0次幂为1)
(式3:表示函数在x=0处的导数为1)
(式4:表示函数在任意处的导数等于y)
这样看来我们只需根据(式4)求解微分方程即可,但这样一来就会直接引出,即,以e为底的对数函数
。但实际上这个时候我并不知道e,这让我很苦恼。因为,我所看到的数学书里面基本上都是先讲对数,再讲
,然后再讲对数函数的反函数,一直到引出e^x和e。所以,我在这里试图改用另一种方法来给出e。
已知我要求的目标函数是f(x)=b^x,现在要基于上面的所有已知条件去构建该函数,使得b的是我们要找的那个数,他能够满足上面四个等式。
第一步:
根据(式2),
又因为(式4),
第一步最终得到,
原函数 | |
导数 |
第二步:
观察第一步的结果,根据求导法则,明显,常数f(0)=1的导数f(0)'应当为0。要想让f(0)的导数f(0)'等于1,f(0)'还应该补上一个x。使得1+x的导数等于1,即:
原函数 | |
导数 |
第三步:
根据(式4)导数f(0)'应该等于f(0),因此,我们要对第二步的结果进行再一次改写,如下:
原函数 | |
导数 |
第四步:
再次根据函数的求导法则,要想让导数f(0)'等于1+x,f(0)不应是1+x,而是1+x+(x^2)/2。
原函数 | |
导数 |
第五步:
再次根据(式4)导数f(0)'应该等于f(0),重写导数。
原函数 | |
导数 |
依此类推,反复的修改原函数与导数,最终我们会得到如下的结果:
原函数 | |
导数 |
原函数 | |
导数 |