官方解读|CNAS软件测试实验室有关检测报告的6个要求应该如何理解

在CNAS-CL01《检测和校准实验室能力认可准则》中,第7.8部分是针对报告结果的全部要求。本文我们分享的是CNAS认可委发布的认可文件解读,通过逐条进行分析,帮助大家了解认可准则中有关CNAS软件测试实验室检测报告部分的内容。

7.8 报告结果

概述:

• 总要求(7.8.1)

——发出前的审查和批准(7.8.1.1)

——出具结果要求(7.8.1.2)

——简化方式要求(7.8.1.3)

• 通用要求(7.8.2)

• 检测报告的特定要求(7.8.3)

• 校准证书的特定要求(7.8.4)

• 报告抽样的特定要求(7.8.5)

• 报告符合性声明(7.8.6)

• 报告意见和解释(7.8.7)

• 报告修改(7.8.8)

7.8.1.1结果在发出前应经过审查和批准。

解读:

•所有的实验室活动的结果在发出前都应经过审查和批准,无论委托人是内部客户还是外部客户。

•无论实验室报告结果的方式是否是简化形式(见7.8.1.3),其结果在发出前也应经过审查和批准。

•审查的内容包括但不限于与CNAS相关文件要求的符合性、与实验室活动方法的符合性、结果的合理性、需要时测量不确定度的评估和应用等内容。

•还需注意实验室的数值修约是否符合相关标准的要求。

7.8.1.2 实验室应准确、清晰、明确和客观地出具结果,并且应包括客户同意的、解释结果所必需的以及所用方法要求的全部信息。实验室通常以报告的形式提供结果(例如检测报告、校准证书或抽样报告)。所有发出的报告应作为技术记录予以保存。

注1:检测报告和校准证书有时称为检测证书和校准报告。

注2:只要满足本准则的要求,报告可以硬拷贝或电子方式发布。

解读:

• 检测报告/校准证书是实验室呈现检测/校准所得数据和结果的一种方式,也是实验室检测/校准工作质量的最终体现。检测报告/校准证书的准确性和可靠性,直接关系客户的切身利益,也关系实验室自身的形象和信誉。

• 本条款对报告结果及信息的充分性、报告结果的形式、报告的保存作出了明确的规定。

• “实验室应准确、清晰、明确和客观地出具结果,并且应包括客户同意的、解释结果所必需的以及所用方法要求的全部信息”,准确、清晰、明确、客观包括了多个方面,既包括样品信息、实验室活动地点信息、实验室活动结果,也包括报告结果。同时准确、清晰、明确和客观地出具结果,也包括不能随意拆分报告,不能不进行检测/校准就报告结果,不能编造结果数据,也不能随意拆分/组合检测/校准结果数据。报告结果的信息要满足7.8.2、7.8.3、7.8.4、7.8.5的要求。

• “实验室通常以报告的形式提供结果(例如检测报告、校准证书或抽样报告)”,检测报告和校准证书有时称为检测证书和校准报告(见注1),报告/证书可以是纸质版本,也可以是硬拷贝或电子方式(见注2 ),只要满足准则的要求即可。

• “所有发出的报告应作为技术记录予以保存”,发出报告的副本作为技术记录予以保存,满足7.5.1的要求。应注意保存的副本应包含发出报告的所有信息,包括审批信息。对于以硬拷贝或电子形式发布的报告,其保存的副本格式应是不可更改的。

• CNAS-EL-13《检测报告和校准证书相关要求的认可说明》中,对本条款也有相应说明,并有相应示例:

2. 实验室出具报告的要求

2.1 实验室应准确、清晰、明确和客观地出具结果。

a)样品信息准确,并且必须是实测样品。

b)如果测试地点不在实验室的固定场所,如在客户地点或样品所在地,报告中应给出详细的地址信息,仅给出“客户地点”等模糊信息是不充分的。

c)如果实际测试过程是由客户的技术人员操作,实验室只是目击了试验的过程并记录下测试数据和信息,报告应以清晰的方式在正文中注明是目击试验,并且不得使用认可标识或声明认可。

d)实验室出具的报告中如有摘用其他机构报告信息的内容,则应在报告中给出清晰的标注,标注的方式应确保报告的使用人不会产生误解。当使用认可标识时,按“外部提供的信息”(视同“分包”)要求控制。

7.8.2(检测、校准或抽样)报告的通用要求

7.8.2.1 除非实验室有有效的理由,每份报告应至少包括下列信息,以最大限度地减少误解或误用的可能性:

a) 标题(例如“检测报告”、“校准证书”或“抽样报告”);

b) 实验室的名称和地址;

c) 实施实验室活动的地点,包括客户设施、实验室固定设施以外的场所,相关的临时或移动设施;

d) 将报告中所有部分标记为完整报告一部分的唯一性标识,以及表明报告结束的清晰标识;

e) 客户的名称和联络信息;

f) 所用方法的识别;

g) 物品的描述、明确的标识,以及必要时,物品的状态;

h) 检测或校准物品的接收日期,以及对结果的有效性和应用至关重要的抽样日期;

i) 实施实验室活动的日期;

j) 报告的发布日期;

k) 如与结果的有效性或应用相关时,实验室或其他机构所用的抽样计划和抽样方法;

l) 结果仅与被检测、被校准或被抽样物品有关的声明;

m) 结果,适当时,带有测量单位;

n) 对方法的补充、偏离或删减;

o) 报告批准人的识别;

p) 当结果来自于外部供应商时,清晰标识。

注:报告中声明除全文复制外,未经实验室批准不得部分复制报告,可以确保报告不被部分摘用。

• 本条款是对报告信息的通用要求,只要适用,至少包括16项信息。7.8.3、7.8.4、7.8.5则分别针对检测、校准、抽样活动的特点对报告包括报告信息规定的特定要求。

• 报告中实验室的名称应与其印章一致。

• 报告中应包括实施实验室活动的地点,只要可能,应叙述具体地址,如果是移动设施,应有该设施的具体信息,不能含糊表述。

• “将报告中所有部分标记为完整报告一部分的唯一性标识”,目前广泛使用的办法是,报告的每一页都有标识,有页码和总页数。

• “所用方法的识别”除方法名称和编号外,还应包括版本信息。

• 报告中物品的描述、状态应准确,需要时可附照片。

• “检测或校准物品的接收日期,以及对结果的有效性和应用至关重要的抽样日期”、“实施实验室活动的日期”这些信息至关重要,特别是对检测时效性有要求的项目,这些时间如果不能清晰表述,直接影响实验室活动结果的有效性。

• “结果仅与被检测、被校准或被抽样物品有关的声明”,该声明是对实验室的保护,因此实验室不能忽视。

• 应注意报告结果时带有的测量单位应与方法要求的一致。

• “注”的内容也是对实验室的一种保护,可防止结果被摘用,实验室应予以重视。

7.8.6 报告符合性声明

7.8.6.1 当作出与规范或标准符合性声明时,实验室应考虑与所用判定规则相关的风险水平(如错误接受、错误拒绝以及统计假设),将所使用的判定规则形成文件,并应用判定规则。

注:如果客户、法规或规范性文件规定了判定规则,无需进一步考虑风险水平。

解读:

• 关于判定规则,认可准则要求对从事符合性声明的人员要进行授权(6.2.6b))。在合同评审时则要求实验室与客户明确是否需要作出与规范或标准符合性的声明(如通过/未通过,在允许限内/超出允许限),如需要,则需与客户讨论并明确规定规范或标准以及判定规则(7.1.3规定)。本条款则是对符合性声明的应用要求,7.8.6.2是对符合性声明报告的要求。

• 对符合性声明的应用,本条款有2个要求:

——考虑与所用判定规则相关的风险水平(如错误接受、错误拒绝以及统计假设);

——将所使用的判定规则形成文件。

• 判定规则是当声明与规定要求的符合性时,描述如何考虑测量不确定度的规则,这就说明判定规则与测量不确定度有关。实验室在作符合性声明时要考虑与所用的判定规则相关的风险,正确评估测量不确定度,选择和使用合适的判定规则,清晰地报告判定规则。如何选择合适的判定规则可参考CNAS-GL015《判定规则和符合性声明指南》。

• 当实验室需要作出与规范或标准符合性的声明时,应将所使用的判定规则制定成文件,在制定文件时要考虑如何应用测量不确定度。关于这一点可参考CNAS-TRL-010《测量不确定度在符合性判定中的应用》,该文件主要依据ISO/IEC指南98-4:2012《测量不确定度-第4部分:测量不确定度在合格评定中的应用》制定。

• “注”说明了什么情况(如果客户、法规或规范性文件规定了判定规则)下可以无需进一步考虑风险水平。

以上就是CNAS-CL01《检测和校准实验室能力认可准则》中有关检测报告的全部要求。如需CNAS软件测试实验室检测报告样例可在评论区留言获取,也可私信我交流探讨。

(本文部分素材来源于CNAS官方,如有侵权请联系删除,更多内容可查看我的专栏)

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含同骑行姿态样本 - Truck(卡车):包含中型货运车辆重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件道路场景,包含车辆密集分布复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参者的实时检测分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeekMermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeekMermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值