DeepSeek本地部署+联网搜索+知识库,收藏这一篇就够了!!

前言

这里分享一个在DeepSeek本地部署+联网搜索+知识库的方法。这个方法呢对比前面更加快捷还能联网搜索。

在这里插入图片描述

操作系统:Windows11 24H2

准备工具:Ollama、Edge(微软浏览器)、Page Assist(扩展应用)

(一)、Deepseek本地安装搭建

操作步骤:

第一步:下载与安装Ollama

https://ollama.com/download

2、推荐使用motrix或迅雷下载(使用IDM快给我整噶皮了)。

https://github.com/ollama/ollama/releases/latest/download/OllamaSetup.exe

首推motrix 下载:(最新版)

3、启动Ollama安装程序,点击Install进行安装,安装前建议关闭防火墙或其他安装软件。

4、快捷键按WIN+R,启动运行,在运行中输入:“CMD” 以管理员身份启动命令窗口,在窗口中输入“Ollama”,然后回车键(Enter)即可。出现如下图提示表示安装成功。

第二步:获取 Deepseek 模型

模型地址

https://ollama.com/search

1、点击“模型”地址后进入模型第一个就是deepseek-r1模型,如不显示则在上方搜索框输入:“deepseek-r1”进行搜索即可。

2、打开“deepseek-r1” 模型后,可以看到,如1.5b\7b\8b\14b\32b\70b\671,具体该如何参考如下表格:(建议先选用小模型,下载会比较慢)

3、结合我自己的配置选择14b(显卡比较弱), 选择14bh后在右侧复制其命令代码。

如:复制“ollama run deepseek-r1:14b”。

4、回到 4 的运行窗口,在窗口中鼠标右键将复制的下载命令输入运行窗口中,然后回车键,等待下载完成。

注意:下载安装默认在系统C盘,检查c盘空间是否有足够空间,否则会失败…

5、完成模型下载。

6、在新的cmd 窗口 输入:“ollama list” 查询已下载模型。

7、进行一次本地测试,你是谁?你讲一下台湾历史?

8、常用命令总结:一些常用Ollama 命令,使用时将 {model_name} 替换成具体模型名称。

(二)、配置Page Assist可视化

操作步骤:

第一步:获取 Page Assist扩展

1、打开Edge(微软浏览器)在地址中输入:“edge://extensions/”,进入开发者模式,在扩展区——获取扩展。

(浏览器不能下扩展在文末提供)

2、在搜索框中输入“Page Assist”进行搜索,点击获取即可安装。

3、点击添加扩展。

4、在扩展中固定Page Assist 应用。

第二步:配置Page Assist应用

1、在浏览其扩展中启用Page Assist应用,在右上角点击设置。

2、在设置中将语言改为简体中文。

3、点击左侧管理模型,查看已经安装的模型,如未加载进行添加模型。

4、回到对话框中,选择安装的Deepseek-r1模型,在下方输入“ 你是谁?”即可检查是否部署完成。

5、开始联网搜索?

(三)、Deepseek配置本地知识库

操作步骤

第一步:下载词嵌入模型

1、打开Ollama 官网,点击模型,再搜索框中输入:“dmeta-embedding-zh”,点击确定进行搜索。

2、打开后点击右侧复制图标将命令复制。

3、在命令窗口中鼠标右键粘贴上面复制命令:“ollama pull shaw/dmeta-embedding-zh
”,然后Enter键盘,等待下载完成。

4、完成词嵌入模型的下载后有如下提示。

第二步:配置词嵌入模型

1、在扩展Page Assist应用中,点击右侧设置按钮,左侧RAG设置,将下载的嵌入词模型添加进来,再点击保存。

第三步:导入本地数据

1、点击右上角设置按钮,左侧导航栏管理知识,点击添加新知识。

2、将提前准备的知识库文档内容加载进来,设置名称将文档加载进来。

3、加载完成后点击提交。

4、回到对话框,测试知识库,发送问题时勾选设置本地知识库即可根据知识库进行解答。

5、启用知识库。

好了,这篇就到这里了。其实部署其他模型如文生图、文生视频等模型方法一样。只要开源模型或者Api 即可。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

DeepSeek全套安装部署资料

在这里插入图片描述

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### DeepSeek 本地部署教程 #### 准备工作 为了成功在本地环境中部署DeepSeek并与AnythingLLM集成,需先完成必要的准备工作。这包括但不限于获取所需的软件包、确认硬件条件满足最低需求以及设置适当的操作系统环境。 对于Windows系统的用户来说,在安装前应确保已准备好支持CUDA计算的NVIDIA显卡以便利用GPU加速功能[^3]。此外,还需从官方渠道下载最新版本的AnythingLLM客户端程序,并按照提示完成基础安装流程。 #### 安装与配置过程 一旦前期准备完毕,则可以着手于具体的技术实施阶段: - **选择合适的LLM Provider**: 在启动后的界面里挑选Ollama作为大型语言模型提供者(LLMProvider),而非默认选项DeepSeek本身。这一操作能触发系统自动检测并加载已经存在于本机上的特定预训练模型实例——即`deepseek-r1:14b`版本。 - **创建工作区(Workspace)**: 接下来便是建立一个新的项目空间来承载即将开展的工作负载。通过简单的向导引导,快速建立起一个可供后续交互使用的对话平台。 ```bash # 假设已经在命令行环境下运行 ollama install deepseek-r1:14b ``` 上述代码片段展示了如何使用Ollama工具链中的install子命令来进行指定型号的语言模型安装。这里特别指定了要安装的是名为`deepseek-r1:14b`的大规模参数量级预训练模型。 #### 构建联网增强型AI应用程序 当基本架构搭建完成后,下一步就是探索更高级的应用场景——比如让这个基于DeepSeek构建的知识查询服务获得互联网连接的能力。借助像Microsoft Semantic Kernel这样的开源框架可以帮助开发者轻松实现这一点[^2]。Semantic Kernel允许我们定义各种类型的插件或技能(skill),这些组件可以在不改变核心逻辑的前提下被灵活组合起来形成新的特性集;而其中最典型的就是网络检索类的功能模块了。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值