投影矩阵之z坐标推导

看了好几篇关于投影矩阵的文章,在z坐标的推导上,没有提到为什么z'和1/z成线性关系,而是通过结论中的投影矩阵,即已知z'= (zA + B)/w,并且x和x',y和y'关系式中分母都有-z,所以w为-z,然后(-n,-f)映射到(-1,1),求出A、B,得到z'和z的关系。

这是用结论去反推过程,过程再得到结论,这样的逻辑我觉得不对,我认为,应该是先得到x,y,z各自的关系式,才去构造出投影矩阵。

 

推导x,y坐标

向量投影到近平面,然后映射到NDC,就可以得到,在此不赘述。

(下文Ze同Z,都是投影前向量坐标(观察空间坐标))

Image_Projection_1.1

式1.1

Image_Projection_1.2

式1.2

 

重点讨论如何推导z坐标

z坐标的转换关系,并不是投影得到的,而是根据我们的需要:

1、表示物体原有的前后关系。

2、映射到标准设备坐标,从(-n,-f)映射到(-1,1)(使用右手坐标系)。

3、近处精度更大;因为精度有限,当场景中有许多物体时,按照重要程度来说,首先保证近处物体前后关系是正确;所以要让近处物体的z坐标有更大的表示范围。

 

关键在于3,在这篇文章(https://learnopengl-cn.github.io/04%20Advanced%20OpenGL/01%20Depth%20testing/#_3)中的深度精度部分有提到,如何让近处有更大表示范围,文章中是映射到(0,1),映射到(-1, 1)也是一样的道理。

这里我认为,不只是z' = A*1/z + B可以达到我们的需求,z' = A*1/z² + B也可以,还可以构造很多关系式都可以达到我们的需求,但是我们的最终目标是构造一个投影矩阵,投影矩阵*向量/齐次坐标=映射后的向量。

 

整理式1.1,式1.2

Image_Projection_2.1

式2.1

Image_Projection_2.2

式2.2

 

整理后,式2.1、式2.2分母都有Ze,因此选择z'(NDC) = A*1/z(观察空间) + B,即可以和x,y的关系式对应起来,又满足我们的需求

(2019.08.15补充:使用1/z还有一个重要的原因在于,光栅化时,需要进行透视校正插值,因为z'(NDC)与1/z(观察空间)是线性关系(证明:https://www.cnblogs.com/cys12345/archive/2009/03/16/1413821.html或《3D游戏与计算机图形学中的数学方法》 第3版,第5.4章节),所以z'(NDC) = A*1/z(观察空间) + B,另外,如果z'(NDC)直接保存为z(观察空间) ,等到进行透视校正插值,再进行转换,这样做是不好的,因为透视校正插值是逐片元操作,就要重复非常多次的运算,直接保存为A*1/z(观察空间) + B,是逐顶点操作,运算次数就少很多)

z'(NDC) = A*1/z + B,(-n, -f)映射到(-1,1)

Image_Projection_2.3

式2.3

 

式2.1,式2.2,式2.3就可以整理出投影矩阵(负号提取到分母)

Image_Projection_3

 

透视投影变换矩阵的推导过程如下: 假设有一个三维点 $(X,Y,Z)$,它在相机坐标系中的坐标为 $(X_c,Y_c,Z_c)$。相机坐标系的原点为相机位置,$Z_c$ 轴指向相机朝向的反方向,$X_c$ 和 $Y_c$ 轴分别与相机的右方向和下方向对齐。 为了把相机坐标系中的点映射到图像平面上,我们需要进行透视投影变换。首先,我们将相机坐标系中的点转换为齐次坐标 $(X_c,Y_c,Z_c,1)$。然后,我们将它乘以一个投影矩阵 $P$,得到一个新的齐次坐标 $(u,v,w,1)$: $$ \begin{bmatrix} u \\ v \\ w \\ 1 \\ \end{bmatrix} = P \cdot \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \\ \end{bmatrix} $$ 其中,$u$ 和 $v$ 分别表示图像平面上的坐标,$w$ 用来进行透视除法,保证 $u$ 和 $v$ 的值在图像平面上。 投影矩阵 $P$ 可以分解为相机内参矩阵 $K$ 和相机外参矩阵 $[R|t]$ 的乘积: $$ P = K [R|t] $$ 其中,$K$ 是一个 $3 \times 3$ 的矩阵,包含了相机的内部参数,如焦距、主点等。$[R|t]$ 是一个 $3 \times 4$ 的矩阵,包含了相机的外部参数,如相机的旋转和平移。 为了推导 $P$ 的具体形式,我们可以先考虑一个简单的情况:相机坐标系的原点与图像平面重合,且相机的朝向与图像平面平行。这种情况下,投影矩阵可以表示为: $$ P = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} $$ 其中,$f$ 是焦距,表示相机到图像平面的距离。 当相机坐标系的原点和图像平面不重合时,我们可以使用相机外参矩阵 $[R|t]$ 来把相机坐标系的原点变换到图像平面上。具体来说,我们可以将相机坐标系的原点变换为 $(X_c',Y_c',Z_c')$,其中 $(X_c',Y_c',0)$ 是图像平面上的点。这个变换可以表示为: $$ \begin{bmatrix} X_c' \\ Y_c' \\ Z_c' \\ 1 \\ \end{bmatrix} = [R|t] \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix} $$ 然后,我们可以把 $(X,Y,Z)$ 变换为 $(X',Y',Z')$,其中 $(X',Y')$ 是图像平面上的坐标。这个变换可以表示为: $$ \begin{bmatrix} X' \\ Y' \\ Z' \\ 1 \\ \end{bmatrix} = [R|t] \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \\ \end{bmatrix} $$ 最后,我们可以将 $(X',Y',Z')$ 投影到图像平面上,得到一个新的齐次坐标 $(u,v,w,1)$。这个投影可以表示为: $$ \begin{bmatrix} u \\ v \\ w \\ 1 \\ \end{bmatrix} = K \cdot \begin{bmatrix} X'/Z' \\ Y'/Z' \\ 1 \\ \end{bmatrix} $$ 将以上三个变换组合起来,我们可以得到透视投影变换矩阵的形式: $$ P = K [R|t] = \begin{bmatrix} f_x & 0 & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ \end{bmatrix} $$ 其中,$f_x$ 和 $f_y$ 是 $K$ 矩阵的对角线元素,分别表示 $x$ 和 $y$ 方向上的焦距;$c_x$ 和 $c_y$ 是 $K$ 矩阵的中心点,表示图像平面上的主点;$r_{ij}$ 和 $t_i$ 是 $[R|t]$ 矩阵的元素,表示相机的旋转和平移。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值