常用的控制系统离散化方法

常用的控制系统离散化方法共有6种,分别是:
(1)前向差分法
(2)后向差分法
(3)双线性变换法
(4)脉冲响应不变法
(5)阶跃响应不变法
(6)零极点匹配法


前三种方法比较简单易用,已知对应的S域传递函数,可以通过简单的代数变换求得对应的Z变换
假设对应的传递函数为D(s) = 1/(RCs+1)
前向差分法:s = (z-1)/Ts
后向差分法:s = (z-1)/zTs
双线性变换法:s = 2(z-1)/[Ts(z+1)]

把D(s)中的s分别用上述的3个公式替换以后,就能产生对应的离散化函数D(z),用于后续的控制与仿真操作。Ts为系统采样时间

个人关于上述的公式简单的理解:s对应连续域的求导操作。前向差分其实就是Y(t) = [X(t+1) - X(t)]/Ts,后向差分是Y(t) = [X(t) - X(t-1)]/Ts



前向差分法离散化以后不保证系统的稳定性。因此后向差分法和双线性变换法较常用,后向差分法公式较简单,本人更喜欢使用一些
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页