meta分析中结果有些会产生偏倚,偏倚的识别方法有: 漏斗图法、 Begg秩相关法、 Egger 回归法。我们今天来介绍使用stata绘制meta分析漏斗图,虽然讲得有点迟了,但是还要讲一讲,也许有些人需要呢。
首先要进行stata的meta分析模块进行安装,不懂的看看我的上一篇文章《Stata绘制(meta分析)森林图(1)》,安装好以后我们先要导入数据(回复:森林图数据1,可以获得数据),我就直接黏贴进去了
一个很简单的数据,stud表示研究名称,a为实验组阳性人数,b为实验组总人数,c为对照组阳性人数,d为对照组总人数
因为漏斗图是对森林图进行的检验,所以我们要先进行森林图绘制,具体可以看文章《Stata绘制(meta分析)森林图(1)》,我这里就直接代码了
metan a b c d, label(namevar=study) fixed rr
生成图后也生成了部分数据,我们在数据框看一下,我们要对_ES这个数据(下图)转换一下,取它的对数,等下用它来作图
gen logrr=log( _ES )
生成了logrr这个变量就可以作图,可以界面操作或者代码,界面操作:
代码操作就是:
metabias logrr _selogES, graph(begg)
有时候stata会报错,显示command metabias is unrecognized
这是找不到metabias这个函数的意思,我们可以把这个安装模块的命令复制到stata重新安装一遍就可以了(公众号回复:代码,可以获得) ,
我们绘制好的漏斗图是黑色的,想要变成白底的就直接把它复制黏贴进word就可以了
除了漏斗图,stata还给出了Begg’s Test和Egger’s test的结果,这也是很重的结果,P大于0.05表示没有偏倚
Egger图的绘制方法也是类似的
代码是:
metabias logrr _selogES, graph(egger)
想具体了解偏倚怎么判断的可以看这篇文献,我觉得写得很好。
本文结束。