格:偏序集S中任意两个元素都存在上确界以及下确界
特别的,所有全序都是格,称为平凡格
(S,∨,∧):由格S诱导的代数运算求上确界(求两个元素最小上界∨)以及下确界(求两个元素最大下界∧ )形成的系统
格S的子格S’:要求S的子集S’对于∨,∧封闭
对偶格:哈斯图颠倒180度
分配不等式
设
(
L
,
S
)
是
一
个
格
,
a
,
b
,
c
是
L
中
任
意
元
素
。
于
是
有
:
a
∧
(
b
∨
c
)
≤
(
a
∧
b
)
∨
(
a
∧
c
)
a
∨
(
b
∧
c
)
≥
(
a
∨
b
)
∧
(
a
∨
c
)
其
中
关
系
“
≥
”
是
关
系
“
≤
”
的
对
偶
关
系
。
设(L,S)是一个格,a,b,c是L 中任意元素。于是有:\\ a∧(b∨c)\leq(a∧b)∨(a∧c)\\a∨(b∧c)\geq(a∨b)∧(a∨c)\\ 其中关系“\geq” 是关系“\leq”的对偶关系。
设(L,S)是一个格,a,b,c是L中任意元素。于是有:a∧(b∨c)≤(a∧b)∨(a∧c)a∨(b∧c)≥(a∨b)∧(a∨c)其中关系“≥”是关系“≤”的对偶关系。
证
明
:
因
为
a
≤
a
∨
b
,
a
≤
a
∨
c
,
所
以
a
≤
(
a
∨
b
)
∧
(
a
∨
c
)
另
外
:
(
b
∧
c
)
≤
(
a
∨
b
)
,
(
b
∧
c
)
≤
(
a
∨
c
)
,
所
以
(
b
∧
c
)
≤
(
a
∨
b
)
∧
(
a
∨
c
)
a
∧
(
b
∨
c
)
≤
(
a
∧
b
)
∨
(
a
∧
c
)
对
偶
地
可
证
得
另
一
不
等
式
。
证明: 因为a\leq a∨b,a\leq a∨c,所以a\leq (a∨b) ∧(a∨c)\\ 另外:(b∧c)\leq (a∨ b),(b∧c)\leq (a∨ c),所以(b∧c)\leq (a∨b) ∧(a∨c)\\ a∧(b∨c)\leq(a∧b)∨(a∧c) 对偶地可证得另一不等式。
证明:因为a≤a∨b,a≤a∨c,所以a≤(a∨b)∧(a∨c)另外:(b∧c)≤(a∨b),(b∧c)≤(a∨c),所以(b∧c)≤(a∨b)∧(a∨c)a∧(b∨c)≤(a∧b)∨(a∧c)对偶地可证得另一不等式。
分配格:
a
∧
(
b
∨
c
)
=
(
a
∧
b
)
∨
(
a
∧
c
)
a
∨
(
b
∧
c
)
=
(
a
∨
b
)
∧
(
a
∨
c
)
a∧(b∨c)=(a∧b)∨(a∧c)\\a∨(b∧c)=(a∨b)∧(a∨c)
a∧(b∨c)=(a∧b)∨(a∧c)a∨(b∧c)=(a∨b)∧(a∨c)
注意:在一般格中,分配律不是总成立的,但分配不等式总是成立的。
格的同态和同构:
定
义
和
一
般
的
同
态
(
保
持
运
算
结
构
)
与
同
构
(
一
一
的
,
保
持
运
算
结
构
)
一
样
定义和一般的同态(保持运算结构)与同构(一一的,保持运算结构)一样
定义和一般的同态(保持运算结构)与同构(一一的,保持运算结构)一样
钻
石
格
:
M
5
,
五
角
格
:
N
5
钻石格:M_5,五角格:N_5
钻石格:M5,五角格:N5
百度百科上有证明:比如M5的中间三个记为bcd不满足等式:先求c,d下界再求上界就是b,分别就只能是a了
分配格的判断:格中没有任何子格与两个五元素非分配格之一(钻石格,五角格)同构
(显然:分配格的子格也是分配格)
分配格的性质:a∧b= a∧c 且 a∨b=a∨c,则b=c
有界格:如果一个格存在全上界[记为1]与全下界[记为0]
上下确界一定是集合中的元素和数学分析中的定义不同
一个格不一定是有界格,比如自然数集排序形成的格,有限格一定是有界格
有补格:每个元素都有补元的有界格(一种特殊的有界格)
对 于 某 有 界 格 , a ∈ A , i f ∃ b ∈ A , b ≠ a , s . t . a ∨ b = 1 , a ∧ b = 0 , 则 称 a 与 b 互 为 补 元 对于某有界格,a\in A,if \exists b\in A,b\neq a,s.t. a∨b=1,a∧b=0,则称a与b互为补元 对于某有界格,a∈A,if∃b∈A,b=a,s.t.a∨b=1,a∧b=0,则称a与b互为补元
有界分配格的补元唯一
布尔格:有补分配格( 任 何 元 素 a 一 定 有 唯 一 的 补 元 a ˉ ( 由 此 可 添 加 求 补 运 算 ) 任何元素a一定有唯一的补元\bar a(由此可添加求补运算) 任何元素a一定有唯一的补元aˉ(由此可添加求补运算))
德·摩根定律:
设
(
L
,
∧
,
∨
)
是
个
分
配
格
,
对
于
任
意
元
素
a
有
余
元
a
ˉ
,
则
有
:
(
a
∧
b
)
‾
=
a
ˉ
∨
b
ˉ
(
a
∨
b
)
‾
=
a
ˉ
∧
b
ˉ
证
明
:
因
为
(
a
ˉ
∨
b
ˉ
)
∨
(
a
∧
b
)
=
(
a
ˉ
∨
b
ˉ
∨
a
)
∧
(
a
ˉ
∨
b
ˉ
∨
b
)
−
−
−
分
配
律
=
(
1
∨
b
ˉ
)
∧
(
a
ˉ
∨
1
)
=
1
∧
1
=
1
设(L,\wedge,\vee)是个分配格,对于任意元素a有余元\bar a,则有:\\ \overline{(a\wedge b)}=\bar a \vee \bar b\\ \overline{(a\vee b)}=\bar a \wedge \bar b\\ 证明:因为(\bar a\vee \bar b)\vee (a\wedge b)\\ =(\bar a\vee \bar b \vee a)\wedge (\bar a\vee \bar b \vee b)---分配律\\ =(1 \vee \bar b )\wedge (\bar a\vee1)=1 \wedge 1=1\\
设(L,∧,∨)是个分配格,对于任意元素a有余元aˉ,则有:(a∧b)=aˉ∨bˉ(a∨b)=aˉ∧bˉ证明:因为(aˉ∨bˉ)∨(a∧b)=(aˉ∨bˉ∨a)∧(aˉ∨bˉ∨b)−−−分配律=(1∨bˉ)∧(aˉ∨1)=1∧1=1
布尔代数:
有限布尔代数的结构
原
子
a
:
∀
x
∈
B
,
x
∧
a
=
a
或
x
∧
a
=
0
(
也
就
是
哈
斯
图
中
盖
住
0
的
所
有
元
素
)
原子a:\forall x\in B,x∧a=a或x∧a=0(也就是哈斯图中盖住0的所有元素)
原子a:∀x∈B,x∧a=a或x∧a=0(也就是哈斯图中盖住0的所有元素)
[
S
t
o
n
e
定
理
]
:
有
限
布
尔
代
数
<
B
,
∨
,
∧
,
−
>
,
M
是
所
有
原
子
构
成
的
集
合
,
则
<
B
,
∨
,
∧
,
−
>
与
<
P
(
M
)
,
∪
,
∩
,
~
>
同
构
[Stone定理]:有限布尔代数<B,∨,∧,->,M是所有原子构成的集合,则<B,∨,∧,->与<P(M),\cup,\cap,~>同构
[Stone定理]:有限布尔代数<B,∨,∧,−>,M是所有原子构成的集合,则<B,∨,∧,−>与<P(M),∪,∩,~>同构
推论:
1.任何有限布尔代数的元素个数为2^n个
2.两个有限布尔代数同构的充要条件是元素个数相同