[1]Kevin Leyton-Brown, Game Theory Online, GTO2-1-05: Social Choice: Arrow's Theorem, Nov 30, 2013, https://www.youtube.com/watch?v=QLi_5LCwJ20&list=PLeY-lFPWgBThrUy3um4FrZh7-fsrk17Ce&index=5
[2]阿罗悖论, 維基百科,https://zh.wikipedia.org/wiki/%E9%98%BF%E7%BD%97%E6%82%96%E8%AE%BA
[3]Yusen Sung , Arrow’s Impossibility Theorem, 2011/12/30, http://homepage.ntu.edu.tw/~ysung/article/PF/arrow.pdf
【轉註】證明Arrow's Theorem.[1]
為了理解Arrow‘s Theorem,我們先定義如下術語和概念:
參與者集是博弈參與者agents集合。在投票中,可理解為投票者集合。
選項集是所有agents可選擇項outcomes的有限集合。在投票中,可理解為每個投票者可排序的選項。
排序集是基於所有可能的strict preference orderings的集合。在投票中,可理解為所有可能的選項排序的集合。
是的一個實例,即每個agent的preference ordering,可以直觀地理解為每個人填好選票後,搜集起來的一沓選票。
是社會福利函數(Social Welfare Function,即公共事務決策函數)最終確定的排序。Arrow's Theorem不管決策函數具體規則如何,如果輸入是選票集是,輸出結果記為。
帕累托效率 (Pareto[pə'ri:təu] Efficiency,PE)[2],又稱“一致性原理”——
一個公共事務決策函數被認為是有帕累托效率的(或有一致性的),當任何任意兩個,,那麼,。
換句話說,如果所有人一致認為選項1優先於選項2,那麼決策函數也認為選項1優先於選項2。
他項無關性 (independece of irrelevant alternatives, IIA)[3] ——
一個公共事務決策函數被認為是“他項無關”的,當且僅當任意,任何兩個選票集,決定。
換句話說,如果有一個選票集,現在修改這個選票集每一張選票上的排序位置,但的相對位置不變,那麼修改後的選票集產生的決策結果中的相對位置不變。
非獨裁式 (non-dictatorship)[3]——
一個公共事務決策函數被認為是非獨裁式的,如果不存在。
換句話說,不存在任何人,ta的排序選擇即公共事務決策函數的排序選擇。
阿羅定理(Arrow's Theorem,又稱Arrow's Impossibility Theorem,又稱阿羅悖論,1951)——
任何公共事務決策函數如果既有帕累托效率的,又是他項無關的,必是獨裁式的。
我們假設選項集至少有3個選項。證明如下——
Step 1: 如果每個人都把這個選項排在最前或最後, 公共事務決策函數輸出的結果也會把這個選項排在最前或最後。
反證法。
如果在中間,那麼假設,根據傳遞性,。
現在,我們修改每一張選票,把排到前面。新的選票中,因為的排序位置很極端,所以和的排序、和的排序不變,那麼根據他項無關性,決策函數 輸出的結果 和的排序、和的排序不變。又因為每個人都是,那麼遵守帕累托效率性,,這和我們的假設矛盾。所以只能在最前或最後。
Step 2:存在一個樞紐人物修改其選項從最後到最前,決定了決策函數也將選項從最後排到最前。
我們將每個人初始的選票集記為。
現在每個人修改選票,將選項排在最後,接著投票者們依次修改選票,將排到最前,存在一個投票者是樞紐人物,使得決策函數將的排序從最後改成最前。
因為如果每個人都把排在最後,那麼決策函數也將排在最後(根據一致性其他任意選項都比優先),反之,如果每個人將排在最前, 決策函數也將排在最前。現在投票者按順序一個一個地將b從最後改到最前,必然存在一個人其修改之前決策函數 將排在最後,其修改之後決策函數將排在最前。我們將這個人記為,其修改之前的選票集標記為,其修改後的選票集記為。
Step 3:樞紐人物任意選項對(除了)的排序決定了決策函數的的排序。
現在觀察 中選票中另外的選項的排序,至少還有兩項,不妨稱。現在稍作修改,將排在之前。修改後的選票集記為。
我們來判斷的排序。
和除了的選票,其他選票不變。而的選票 和 中優先於這個排序不變,根據他項無關性,既然,可以推知。
和除了的選票,其他選票不變。而的選票和中優先於這個排序不變,根據他項無關性,既然,可以推知。
根據傳遞性,。
現在每個人按照其自由意志將排到某個地方去,比如變回的選票的樣子,記為。
此時,每張選票a和c的排序不變,根據他項無關性,既然,可以推知。換句話說,我們觀察到的選票除了任意選項對的排序決定了決策函數中的排序。
Step 4:也決定決策函數中的排序。
考慮第三個選項,找到其樞紐人物,那麼是任意選項對的獨裁者,包括。又因為在和這種特定的場景中對決策函數中的排序有決定作用,說明和是同一人,否則在那個特定的場景,就有兩個獨裁者了,他們矛盾的話,就稱不上獨裁者了。