“阿羅定理”證明

[1]Kevin Leyton-Brown, Game Theory Online, GTO2-1-05: Social Choice: Arrow's Theorem, Nov 30, 2013, https://www.youtube.com/watch?v=QLi_5LCwJ20&list=PLeY-lFPWgBThrUy3um4FrZh7-fsrk17Ce&index=5

[2]阿罗悖论,  維基百科,https://zh.wikipedia.org/wiki/%E9%98%BF%E7%BD%97%E6%82%96%E8%AE%BA

[3]Yusen Sung , Arrow’s Impossibility Theorem, 2011/12/30, http://homepage.ntu.edu.tw/~ysung/article/PF/arrow.pdf

【轉註】證明Arrow's Theorem.[1]

為了理解Arrow‘s Theorem,我們先定義如下術語和概念:

參與者集N是博弈參與者agents集合。在投票中,N可理解為投票者集合。 

選項集O是所有agents可選擇項outcomes的有限集合。在投票中,O可理解為每個投票者可排序的選項。 

排序集L是基於O所有可能的strict preference orderings的集合。在投票中,L可理解為所有可能的選項排序的集合。 

[\succ]L^n的一個實例,即每個agent的preference ordering,可以直觀地理解為每個人填好選票後,搜集起來的一沓選票。

\succ_W是社會福利函數(Social Welfare Function,即公共事務決策函數)最終確定的排序。Arrow's Theorem不管決策函數具體規則如何,如果輸入是選票集是[\succ'],輸出結果記為\succ_{W([\succ'])}

帕累托效率 (Pareto[pə'ri:təu] Efficiency,PE)[2],又稱“一致性原理”——

一個公共事務決策函數W被認為是有帕累托效率的(或有一致性的),當任何任意兩個o_1, o_2 \in O\forall i, o_1 \succ_i o_2,那麼,o_1 \succ_W o_2

換句話說,如果所有人一致認為選項1優先於選項2,那麼決策函數也認為選項1優先於選項2。

他項無關性 (independece of irrelevant alternatives, IIA)[3] ——

一個公共事務決策函數W被認為是“他項無關”的,當且僅當任意o_1, o_2 \in O,任何兩個選票集[\succ'],[\succ''] \in L^n, \forall i (o_1 \succ' o_2 \text{ if and only if } o_1 \succ'' o_2),決定o_1 \succ_{W([\succ'])} o_2 \text{ if and only if } o_1 \succ_{W([\succ''])} o_2

換句話說,如果有一個選票集,現在修改這個選票集每一張選票上o_3的排序位置,但o_1, o_2的相對位置不變,那麼修改後的選票集產生的決策結果中o_1, o_2的相對位置不變。

 

非獨裁式 (non-dictatorship)[3]——

一個公共事務決策函數W被認為是非獨裁式的,如果不存在i \forall o_1, o_2 (o_1 \succ_i o_2 \Rightarrow o_1\succ_W o_2 )

換句話說,不存在任何人,ta的排序選擇即公共事務決策函數W的排序選擇。

 阿羅定理(Arrow's Theorem,又稱Arrow's Impossibility Theorem,又稱阿羅悖論,1951)——

任何公共事務決策函數W如果既有帕累托效率的,又是他項無關的,必是獨裁式的。

我們假設選項集O至少有3個選項。證明如下——

Step 1: 如果每個人都把b這個選項排在最前或最後, 公共事務決策函數W輸出的結果也會把b這個選項排在最前或最後。

反證法。

如果b在中間,那麼假設a\succ_W b \succ_W c,根據傳遞性,a \succ_W c

現在,我們修改每一張選票,把c排到a前面。新的選票中,因為b的排序位置很極端,所以ab的排序、bc的排序不變,那麼根據他項無關性,決策函數 W輸出的結果 ab的排序、bc的排序不變。又因為每個人都是c \succ a,那麼遵守帕累托效率性,c \succ_W a,這和我們的假設矛盾。所以b只能在最前或最後。

 Step 2:存在一個樞紐人物n^*修改其選項b從最後到最前,決定了決策函數W也將選項b從最後排到最前。

我們將每個人初始的選票集記為[\succ^0]

現在每個人修改選票,將選項b排在最後,接著投票者們依次修改選票,將b排到最前,存在一個投票者n^*是樞紐人物,使得決策函數Wb的排序從最後改成最前。

因為如果每個人都把b排在最後,那麼決策函數W也將b排在最後(根據一致性其他任意選項都比b優先),反之,如果每個人將b排在最前, 決策函數W也將b排在最前。現在投票者按順序一個一個地將b從最後改到最前,必然存在一個人其修改之前決策函數W 將b排在最後,其修改之後決策函數Wb排在最前。我們將這個人記為n^*,其修改b之前的選票集標記為[\succ^1],其修改b後的選票集記為[\succ^2]

Step 3:樞紐人物n^*任意選項對ac(除了b)的排序決定了決策函數Wac的排序。

現在觀察[\succ^2] 中n^*選票中另外的選項的排序,至少還有兩項,不妨稱a \succ^2 c。現在n^*稍作修改,將a排在b之前。修改後的選票集記為[\succ^3]

我們來判斷\succ_W的排序。

[\succ^1][\succ^3]除了n^*的選票,其他選票不變。而n^*的選票 [\succ^1][\succ^3] 中a優先於b這個排序不變,根據他項無關性,既然a \succ_{W([\succ^1])} b,可以推知a \succ_{W([\succ^3])} b

[\succ^2][\succ^3]除了n^*的選票,其他選票不變。而n^*的選票[\succ^2][\succ^3]b優先於c這個排序不變,根據他項無關性,既然b \succ_{W([\succ^2])}c,可以推知b \succ_{W([\succ^3])} c

根據傳遞性,a \succ_{W([\succ^3])} c

現在每個人按照其自由意志將b排到某個地方去,比如變回[\succ^0]的選票的樣子,記為[\succ^4]

此時,每張選票a和c的排序不變,根據他項無關性,既然a \succ_{W([\succ^3])} c,可以推知a \succ_{W([\succ^4])} c。換句話說,我們觀察到n^*的選票除了b任意選項對ac的排序決定了決策函數Wac的排序。

 Step 4:n^*也決定決策函數Wab的排序。

考慮第三個選項c,找到其樞紐人物n^{**},那麼n^{**}是任意選項對\alpha\beta的獨裁者,包括ab。又因為在[\succ^1][\succ^2]這種特定的場景中n^*對決策函數中ab的排序有決定作用,說明n^{**}n^*是同一人,否則在那個特定的場景,就有兩個獨裁者了,他們矛盾的話,就稱不上獨裁者了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值