【实习生招聘】-- 京东科技大模型算法岗!

【岗位名称】

京东科技—大模型算法实习生

【工作地点】

北京

【[岗位职责]】

1、参与大模型意图识别算法研究,包括模型训练、部署和优化;

2、参与机器人项目,负责意图识别业务需求。

【任职要求】

1、人工智能、计算机科学、自动化、机器学习等领域硕士或博士在读;

2、了解NLP主流预训练语言模型(GPT/LLaMA/T5/PaLM/GLM/Bloom/BERT等),参与过NLP中分类、文本生成、文本匹配等任务的效果优化工作

3、熟悉LLM、Agent、RAG等相关技术优先;

4、具有较强的工程能力,能够将算法进行落地部署;

5、精通Python/ C++,熟练掌握PyTorch开源深度学习框架;

6、在高水平国际会议和学术期刊发表过相关论文,或有高水平竞赛获奖经历的优先考虑;

7、实习期至少六个月以上,线下实习,不支持线上,每周到岗4天以上。

【岗位福利】

1、充足的的GPU训练资源;

2、能参与到前沿的大模型、具身智能等开发项目中;

3、专业指导、良好的实习氛围;

4、优越的实习薪酬。

【申请方式】

联系邮箱:zhangtianle14@jd.com

邮件主题:姓名-实习申请,来信请附个人简历

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

作者:张乐
链接:https://zhuanlan.zhihu.com/p/719736075
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

### 大模型算法实习日常工作 大模型算法实习生的工作通常围绕着数据预处理、模型训练与调优展开。具体来说,在日常工作中,实习生会参与大规模语料库的清洗和准备过程[^2]。这包括去除噪声数据、标注数据集以及构建适合特定任务的数据管道。 对于像llama、glm或bloom这样的大型语言模型而言,其训练涉及复杂的分布式计算环境设置,需要理解并配置高性能GPU集群来加速训练进程。此外,还需要掌握如何调整超参数以优化性能表现,比如学习率调度策略的选择等。 在实际操作层面,实习生可能会被分配到具体的子项目上,负责某一模块的功能开发或是针对现有框架进行改进工作。例如,探索更高效的注意力机制设计方法,研究不同的标准化层(norm layers),或者是提升嵌入表示(embedding)的质量等方面的研究课题。 ### 手工实现算法的要求 当提到“手撕”算法时,这意味着候选人应该能够独立完成从理论推导到代码实现的过程而不仅仅依赖现成工具包中的函数接口。以下是几个关键能力: #### 数据结构与算法基础扎实 具备良好的编程习惯和技术栈积累,熟悉常用的数据结构如链表、树形结构及其遍历方式;精通基本排序查找算法原理及应用场景分析。 #### 掌握核心机器学习概念 深入理解监督/无监督学习范式下各类经典预测建模技术背后的数学逻辑关系,特别是线性回归、决策树和支持向量机等内容,并能通过Python或其他高级脚本语言将其转化为可执行程序片段。 #### 实战经验不可或缺 拥有一定数量的真实案例练习经历非常重要,尤其是在自然语言处理领域内涉及到文本分类、情感倾向识别等问题解决过程中所运用的技术手段。下面给出一段简单的基于PyTorch的手动实现多层感知器(MLP)用于MNIST手写数字识别的例子作为参考: ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform) trainloader = DataLoader(trainset, batch_size=64, shuffle=True) class MLP(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(784, 128) self.fc2 = torch.nn.Linear(128, 64) self.fc3 = torch.nn.Linear(64, 10) def forward(self, x): x = x.view(x.shape[0], -1) # Flatten the input tensor. x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x model = MLP() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) for epoch in range(5): running_loss = 0 for images, labels in trainloader: optimizer.zero_grad() output = model(images) loss = criterion(output, labels) loss.backward() optimizer.step() running_loss += loss.item() else: print(f"Epoch {epoch+1}: Training Loss: {running_loss/len(trainloader)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值