图像压缩编码——香农/哈夫曼编码

本文介绍了Python矩阵的基本运算,并深入讲解了梯度下降法,包括梯度的定义、微分的定义以及梯度下降法在机器学习中的应用。通过手动和Excel求解梯度下降法的例子,展示了如何寻找目标函数的最小值。此外,文章还讨论了线性回归中的代价函数及其梯度,并给出了相应的代码实现和图像展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Python矩阵基本运算学习

在这里插入图片描述
在这里插入图片描述

二、梯度下降法

梯度的定义

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

微分的定义

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。

梯度下降法的定义

梯度下降在机器学习中应用十分的广泛,不论是在线性回归还是Logistic回归中,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。

梯度算法手工求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Excel梯度下降法求解

求:z=2(x-1)^2 + y^2的近似根
在这里插入图片描述
迭代到第1000步,极值一直不出来在这里插入图片描述
修改学习率为0.15,极值出来了为(0,0)
在这里插入图片描述

线性回归求解

在这里插入图片描述
定义一个代价函数
代码如下

#导入bumpy包
from numpy import *
#定义别名
import numpy as np
# 定义数据集的大小 即20个数据点
m = 20
# x的坐标以及对应的矩阵
X0 = ones((m, 1))  # 生成一个m行1列的向量,其值全是1
X1 = arange(1, m+1).reshape(m, 1)  # 生成一个m行1列的向量,也就是x1,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值