[学习日记] 关于鹿鸣CG及其仿真人工智能的一些学习和思考 ~2021.02.11[另外新年快乐❤]

本文介绍了米哈游的鹿鸣CG技术,特别是如何结合物理模拟与人工智能算法来优化布料动画制作。通过学习,作者发现该方法能根据关键帧推测布料物理特性,并自动选择过渡帧,提高效率。此外,作者还关注到在布料演算中的优化方向,并提及UE4的MetaHuman技术在快速构建真实人物模型方面的进步。文章表达了对图形学发展中工具改进的赞赏,并鼓励大家探索相关领域的知识。
摘要由CSDN通过智能技术生成
由鹿鸣引出的技术探索和见证虚幻引擎MetaHuman快速真实“造人”创举的一些想法 文:喵蛙种子(也就是夏风我)

先说最重要的,今天喵(我)看了米哈游N0va(鹿鸣)方法的部分技术背景,得知N0va原本布料CG制作流程是以单纯物理模拟或单纯手工制作关键帧来做的,要么耗时要么耗力。
所以不妨把2者结合起来各取优点,同时最重要的是Mihoyo团队和Leed大学团队等人使用人工智能算法,训练出能把 具有相同的物理特性的布料运动样子(形状),放到一起(相同的特征空间)的编码算法,图解如下:来自论文的算法插图1
(以下为个人理解)这种方法可以方便的通过一个关键帧的图样,来推测布料的物理特性(如受重力、阻力等)
甚至就像图中一样更加暴力,干脆忽略“物理特性”这一中间过程,在通过手工 得到一个布料图样之后,根据此算法找到它所在的上图1的集合,然后在这个有相同布料属性的裙子库里,由计算机自动选择合适的过渡帧,达到KEY(制作)一个关键帧就“举一反三”的效果,通过找关键帧这个范例的家族,很容易的使计算机物理模拟布料更好的符合布料本身特性。这是N0va方法设计上很高明的地方。

关于后续的人工智能算法,明日再继续研究,此刻我的基础人工智能知识还不太够…

!有趣的是࿰

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值