GPT-4o文生图升级,助你高效完成高质量科研配图!

GPT-4o刚刚更新的文生图功能,不是DALL E扩散模型的改进,而是GPT-4o的自回归模型。可以利用GPT-4o模型的所有能力来生成图片。包括:

           

1 精确的文本渲染:新模型在图像中生成文字的能力显著提升,能够准确呈现文本内容,解决了之前AI图像生成器在这方面的难题。 

2 自定义操作和风格转换:用户可以通过自然对话与模型交互,要求改进图像,支持自定义操作、连续发问、风格转换等功能,提升了图像生成的灵活性和可控性。

3 多对象处理能力增强:GPT-4o能够同时处理多个不同的对象,确保图像中各要素的相关性和一致性。 

4 透明背景支持:新模型支持生成带有透明背景的图像,方便创建贴纸、徽标等应用场景。

           

娜姐尝试了一番,有比较惊艳的,也有还不尽如人意的。因为在科研绘图中最重要的要求是准确性,不论是什么风格的图片,不能跟事实不符,这是基本要求。

           

娜姐展示几个比较适合科研人的使用场景,给大家抛砖引玉:    

1 风格转换:

直接使用别人已发表的图,或者网络图片有侵权的风险。但是,咱们换一种风格,用在自己的论文中,是可以的:

比如,需要一个细胞器内部结构的示意图,直接让GPT-4o转换风格,这样既能保留图片的准确性,又避免了版权问题:

图片

    

图片

这里的提示词关键是“请你将附件XX图转换为透明背景的线图风格,保留一切细节。” 一键勾勒所有细节线条,透明背景出图,方便你后期调整颜色、加文字。

           

2 展示多步骤的作用过程:

GPT-4o可以保持元素和背景的一致性:    

图片

    

图片

关键词是,绘制多格XX,展示XX过程。

           

3 封面创意出图

首先提交样图,让GPT-4o分析并学习:    

图片

           

然后再提交论文主要信息,以及绘制要求,让GPT-4o创意出图:    

图片

           

人画的有点密集恐惧,我想用蛋白质三维结构勾勒:    

图片

对比原图,会发现这里图片有些微调。如果其他不想动,可以强调“其他元素不变,保持布局和细节一致。”

           

               

4 示意图

图片

作者原图:    

图片

对比原图,GPT-4o比较清晰的传达了“纳米技术工具(如固体支撑或囊状脂质双层膜)被用来评估附件蛋白与膜相互作用的分子原理(1)。二维和三维细胞培养模型被用来分析细胞水平的附件蛋白功能(2)。这些方法连同在整个生物体内的研究工作将使人们对附件蛋白的功能有一个系统的了解,从而在诊断和治疗人类病症时利用附件蛋白的特性(3)”

           

5 摘要图Graphical Abstract

首先根据主要内容设计图片:    

图片

           

然后再生成:    

图片

           

细节修改:    

图片

           

           

娜姐的使用建议:

1 中文字没有英文字显示准确度高,最好是翻译成英文,再生成;

2 生成的图不分图层,不是矢量图,不能修改。

3 可以生成透明背景、不带文字的图,自己后期再加字、进一步组合加工;

4 太复杂的图,可以分两步:第一步让GPT4o设计该图的布局,第二步再调用图像生成功能,根据描述成成图像。

           

提示词tips:

  • 使用风格参考(漫画风格、线图、素描、摄影等限定词)。    

  • 单个元素改进:“重要的是:不要改变布局和细节。”

  • 多多尝试。重新生成;再生成5个,然后从中选择更理想的。    

<think>好的,我现在需要处理用户关于AIGC(生成式人工智能)技术发展路径和关键节点的查询。首先,我需要回顾用户提供的引用内容,确保回答准确并正确引用。用户提到了两个引用,[^1]和[^2],其中引用[1]详细描述了AIGC的发展历程、技术推进路线、应用场景及未来前景,而引用[2]则侧重于文生技术的发展。 首先,我需要整理AIGC技术的发展历程,特别是关键的时间节点。根据引用[1],AIGC的发展可以分为几个阶段:萌芽期、探索期和爆发期。例如,2014年GAN的提出是一个重要节点,2017年Transformer架构的推出也是关键。同时,OpenAI的模型发展进程如GPT系列也需要涵盖。 接下来是技术推进路线。这里需要区分不同技术方向,如生成模型架构(GAN、Transformer、Diffusion)、多模态生成技术和强化学习的结合。引用[1]提到了这些技术,需要详细说明每个技术的贡献和时间点。 关键技术部分需要列举如GAN、Transformer、扩散模型、CLIP等,并解释它们的作用。例如,扩散模型在像生成中的应用,如Stable Diffusion,属于引用[1]和[2]的内容。 应用场景方面,用户可能想知道AIGC在文本、像、视频等领域的应用,这部分引用[1]的2.1和3.1部分有涉及,需要结合实例说明,如DALL-E和MidJourney。 未来展望部分,引用[1]的4.1提到了科研重要性,需要强调技术创新和伦理问题,这也符合当前AI发展的趋势。 在回答过程中,必须确保所有数学表达式正确使用LaTeX格式,如生成模型的数学公式。例如,GAN的目标函数可以表示为$$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log (1 - D(G(z)))] $$,并正确引用[^1]。 用户要求生成相关问题,我需要设计四个与AIGC技术发展相关的问题,涵盖关键技术对比、多模态生成难点、伦理挑战和产业影响,确保问题具有深度和引导性。 最后,检查引用标识是否正确添加,如每个关键点后的引用[^1]或,并确保回答结构清晰,符合用户的中文要求,避免使用任何Markdown格式,保持自然流畅。</think>### AIGC技术发展路径与关键节点解析 #### 一、技术发展历程 1. **萌芽期(2014年前)** - 2014年,生成对抗网络(GAN)的提出标志着AIGC技术进入新阶段。其数学目标函数可表示为: $$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log (1 - D(G(z)))] $$ 该框架为像生成奠定了基础。 - 同期,变分自编码器(VAE)通过概率建模实现数据生成,公式为: $$ \log p(x) \geq \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}(q(z|x) \| p(z)) $$ 2. **探索期(2017-2020)** - 2017年,Transformer架构的提出(论文《Attention Is All You Need》)彻底改变了序列建模,公式中的自注意力机制为: $$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 这一架构支撑了GPT、BERT等大语言模型。 - 2020年,OpenAI发布GPT-3(1750亿参数),验证了模型规模对生成能力的提升。 3. **爆发期(2021至今)** - 2021年,扩散模型(Diffusion Models)在像生成领域超越GAN,其核心公式为: $$ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) $$ Stable Diffusion等工具推动文生技术普及。 - 2022年,ChatGPT(基于GPT-3.5/4)实现自然语言交互突破,带动AIGC应用爆发。 --- #### 二、关键技术路线 | 技术方向 | 关键进展 | 代表性模型/工具 | |----------------|--------------------------------------------|--------------------------| | **生成模型架构** | GAN → Transformer → Diffusion | StyleGAN、GPT-3、Stable Diffusion | | **多模态生成** | 文本→像→视频→3D | DALL·E、Sora、Point-E | | **训练方法** | 无监督预训练 → 指令微调 → 人类反馈强化学习(RLHF) | InstructGPTChatGPT | --- #### 三、核心技术突破 1. **生成模型架构创新** - **扩散模型**:通过逐步去噪实现高质量生成,解决了GAN的模式崩溃问题[^2]。 - **Transformer跨模态扩展**:如CLIP模型将文本与像映射到同一空间,公式为: $$ \text{similarity} = \text{cosine}(E_{\text{text}}(t), E_{\text{image}}(i)) $$ 2. **训练数据与算力突破** - 训练数据集规模从GB级(GPT-2)扩展到TB级(GPT-4)[^1]。 - 算力需求呈指数增长,GPT-3训练需$3.14 \times 10^{23}$ FLOPs。 --- #### 四、典型应用场景 1. **文生**:MidJourney、Stable Diffusion实现“文字→像”生成。 2. **代码生成**:GitHub Copilot基于Codex模型自动补全代码。 3. **数字人创作**:通过NeRF、Audio2Face等技术生成3D虚拟形象。 --- #### 五、未来发展方向 1. **可控生成**:提升生成内容的精确控制能力(如空间约束$f(x,y,z)=0$)。 2. **推理能力增强**:结合符号逻辑实现可解释生成,公式化表示为: $$ \text{Generate}(x) = \text{NN}(x) \oplus \text{SymbolicReasoning}(x) $$ 3. **伦理与安全**:开发内容检测算法(如检测生成文本的统计特征$p_{\text{fake}}(x)$)[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值