GPT-4o 用图像创作赋能,重塑创意产业格局。
微信搜索关注《AI科技论谈》
在AI应用领域,GPT-4o生成吉卜力风格表情包的功能引发广泛关注。让我们深入探讨目前为止GPT-4o最令人瞩目的应用,以及它们为何意义重大。
一、吉卜力风格的表情包
GPT-4o 最早为人熟知的应用之一,是生成带有吉卜力工作室标志性艺术风格、适合做成表情包的图像。这些图像绝非普通动漫草图可比,精准捕捉到了宫崎骏作品中独有的情感深度、光影效果与奇幻魅力。
同时,它们能引发深层情感共鸣,还具备文本与图像自动融合的能力。
这一应用为营销和创意领域带来新契机。营销人员和创意者可借此快速产出高辨识度的品牌内容,粉丝创作也更为轻松,输入提示即可完成。它提升了创作效率,丰富了创意表达形式,推动了创意内容的多元化发展。
二、 GPT-4o重塑前沿平面设计
设计师用GPT-4o生成UI模型、塑造品牌概念、打造产品包装视觉效果,成果融合现代趋势、色彩心理学与布局理论,独具创新性。
设计亮点
-
生成完整UX流程:涵盖菜单、CTA和响应式布局建议。
-
按需打造品牌模型:在多种载体上呈现逼真标志设计。
-
运用多元设计风格:如扁平、拟物、粗野主义设计等。
变革意义
GPT-4o大幅加快平面设计构思阶段。设计师无需制作灵感板和反复绘图,30秒就能获取10个着陆页设计版本,可专注完善设计,提升效率与质量。
三、GPT-4o“制造”以假乱真的维基百科截图
GPT-4o 的应用不止于设计领域,其在内容生成方面也展现出令人惊叹的能力 —— 生成以假乱真但功能完备的维基百科截图。它能够创建关于虚构或荒诞主题的假维基百科页面,这些页面具备完整的引用、信息框和结构化内容,在视觉和内容上都与真实的维基百科页面高度相似。
四、超精确的技术图表
GPT-4o的能力不仅限于美学领域。它还能为工程、生物学、建筑学和软件开发等领域生成技术图表,包括:
-
电路布局图
-
软件即服务(SaaS)产品的流程图
-
用于医学培训的解剖图
-
供应链网络图
而且它生成的图表在语义上非常准确,这意味着它理解各个部分为何以特定方式连接。
影响:
这降低了那些难以将自己的想法可视化的专业人士的门槛。数据科学家或医生只需向GPT-4o发出指令,就能在几秒钟内获得可用于发表的图表。
五、前所未有的广告创意和营销素材
或许GPT-4o图像生成在商业领域最具影响力的应用就是广告行业。营销人员已经开始利用它来:
-
创建针对特定人群的Facebook和Instagram广告。
-
生成具有本地化主题的季节性横幅广告。
-
在品牌背景下模拟广告牌、传单和包装的设计。
案例研究:
一家时尚初创公司使用GPT-4o进行创作:
-
在不同的现实场景(城市、海滩、森林)中生成10张产品图片。
-
制作符合地区时尚潮流的生活方式广告,其中的模特风格与之适配。
-
自动生成关于可持续材料的信息图表。
这意味着:
初创公司、广告公司和个体创业者现在可以零成本制作企业级的视觉素材。这使得品牌故事讲述变得更加普及,为视觉营销创造了更公平的竞争环境。
六、为何GPT-4o的图像生成功能对创意人员和企业意义重大
GPT-4o模糊了创意构思与技术实现之间的界限。它赋予了不同从业者新的能力:
-
让设计师能够更快地制作原型;
-
助力营销人员大规模实现个性化营销;
-
帮助开发者可视化模拟用户界面/用户体验(UI/UX);
-
使教育工作者可以利用生成的视觉辅助工具进行教学;
-
协助内容创作者运用符合品牌风格的图像强化故事讲述效果。
有了GPT-4o,人们不再需要使用多种工具(比如一个工具做灵感板,一个画图表,一个找素材图片等等),它成为了唯一的创意伙伴。
七、AI生成图像的风险与伦理问题
能力越大,责任越大。GPT-4o强大的功能也引发了诸多担忧:
-
深度伪造风险:它模仿网站、风格或身份的能力可能会被滥用;
-
传播错误信息:虚假的维基百科页面或科学图表,如果脱离了原本的语境,可能会传播错误信息;
-
版权灰色地带:模仿艺术家的风格(例如吉卜力工作室的风格)会引发关于衍生作品的版权争议;
-
创意工作者被取代:如果人工智能能够进行创作,那么人类设计师的出路在哪里?
技术本身并无善恶之分,使用意图决定了结果。相关行业必须尽快采用符合伦理道德的最佳实践准则。
推荐书单
《深入浅出机器学习:从数据到AI算法》
《深入浅出机器学习:从数据到大模型》是一本旨在帮助读者系统学习机器学习的著作。本书通过深入浅出的方式,将复杂的机器学习理论和技术讲解得深入浅出。
本书从机器学习的基础开始,为读者提供了对数据处理、特征工程和模型评估等核心概念的全面介绍。读者将学习如何准备和清洗数据,如何选择和构建合适的特征,并学会使用各种评估指标来评估模型性能。
然后,本书深入探讨了常见的机器学习算法和技术。详细解释了线性回归、逻辑回归和神经网络等算法的原理和应用,通过丰富的示例和实践项目,掌握这些算法的实现和调优技巧。
本书聚焦于大规模模型和深度学习,介绍了深度学习的基本原理和常用的深度学习框架,如TensorFlow和PyTorch。读者将学习如何构建深度神经网络,如何进行模型训练和调优,并了解大规模机器学习系统的实现和部署。
购买链接:https://item.jd.com/14387333.html
精彩回顾
QwQ-32B本地部署教程来了,全新开源推理大模型,性能比肩DeepSeek满血版
解读Deep Research:传统RAG已死,带你实现Agentic RAG