YUV、YUV420P(YU12和YV12)、NV12、NV21编码

什么是YUV

一种颜色编码方法(一种色彩模型)

YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传输,所以用YUV方式传送占用极少的频宽。

码流的存储格式

YUV格式有两大类:planar和packed。

对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。

对于packed的YUV格式,每个像素点的Y,U,V是连续交叉存储的。

子格式

YUV模型是根据一个亮度(Y分量)和两个色度(UV分量)来定义颜色空间,常见的YUV格式有YUY2、YUYV、YVYU、UYVY、AYUV、Y41P、Y411、Y211、IF09、IYUV、YV12、YVU9、YUV411、YUV420等,其中比较常见的YUV420分为两种:YUV420P和YUV420SP

我们在android平台下使用相机默认图像格式是NV21属于YUV420SP格式

采样

YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0。

YUV与RGB的转换

如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。

链接:https://blog.csdn.net/lx123010/article/details/107407681

YUV采样

YUV 4:4:4采样,每一个Y对应一组UV分量,一个YUV占8+8+8 = 24bits 3个字节。
YUV 4:2:2采样,每两个Y共用一组UV分量,一个YUV占8+4+4 = 16bits 2个字节。
YUV 4:2:0采样,每四个Y共用一组UV分量,一个YUV占8+2+2 = 12bits 1.5个字节。

我们最常见的YUV420P和YUV420SP都是基于4:2:0采样的,所以如果图片的宽为width,高为heigth,在内存中占的空间为width * height * 3 / 2,其中前width * height的空间存放Y分量,接着width * height / 4存放U分量,最后width * height / 4存放V分量

YUV420P(YU12和YV12)格式

YUV420P又叫plane平面模式Y , U , V分别在不同平面,也就是有三个平面,它是YUV标准格式4:2:0,主要分为:YU12和YV12

  • YU12格式

android平台下也叫作I420格式,首先是所有Y值,然后是所有U值,最后是所有V值

YU12:亮度(行×列) + U(行×列/4) + V(行×列/4)

  • YV12格式

YV12格式YU12基本相同,首先是所有Y值,然后是所有V值,最后是所有U值。只要注意从适当的位置提取U和V值YU12和YV12都可以使用相同的算法进行处理。

YV12:亮度Y(行×列) + V(行×列/4) + U(行×列/4)

YU12: YYYYYYYY UUVV    =>    YUV420P
YV12: YYYYYYYY VVUU    =>    YUV420P
  • NV21格式

android手机从摄像头采集的预览数据一般都是NV21,存储顺序是先存Y,再VU交替存储,NV21存储顺序是先存Y值,再VU交替存储:YYYYVUVUVU,以 4 X 4 图片为例子,占用内存为 4 X 4 X 3 / 2 = 24 个字节

  • NV12格式

NV12与NV21类似,也属于YUV420SP格式,NV12存储顺序是先存Y值,再UV交替存储:YYYYUVUVUV,以 4 X 4 图片为例子,占用内存为 4 X 4 X 3 / 2 = 24 个字节

注意:在DVD中,色度信号被存储成Cb和Cr(C代表颜色,b代表蓝色,r代表红色)

NV12: YYYYYYYY UVUV    =>YUV420SP
NV21: YYYYYYYY VUVU    =>YUV420SP

YUV和RGB转换

Y      =  (0.257 * R) + (0.504 * G) + (0.098 * B) + 16
Cr = V =  (0.439 * R) - (0.368 * G) - (0.071 * B) + 128
Cb = U = -(0.148 * R) - (0.291 * G) + (0.439 * B) + 128

B = 1.164(Y - 16) + 2.018(U - 128)
G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128)
R = 1.164(Y - 16) + 1.596(V - 128)

RGB/YUV视频像素数据的处理方法

https://blog.csdn.net/leixiaohua1020/article/details/50534150

https://en.wikipedia.org/wiki/YUV

4.4 YUV采样格式细节

YUV 图像的主流采样方式有如下三种:

YUV 4:4:4 采样YUV 4:2:2 采样YUV 4:2:0 采样

4.4.1 YUV 4:4:4采样

​ YUV 4:4:4 采样,意味着 Y、U、V 三个分量的采样比例相同,因此在生成的图像里,每个像素的三个分量信息完整,都是 8 bit,也就是一个字节。

如下图所示:

在这里插入图片描述
其中,Y 分量用叉表示,UV 分量用圆圈表示。

举个例子 : 假如图像像素为:[Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3] 那么采样的码流为:Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3 最后映射出的像素点依旧为 [Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3]
可以看到这种采样方式的图像和 RGB 颜色模型的图像大小是一样,并没有达到节省带宽的目的,当将 RGB 图像转换为 YUV 图像时,也是先转换为 YUV 4:4:4 采样的图像。

4.4.2 YUV 4:2:2采样
YUV 4:2:2 采样,意味着 UV 分量是 Y 分量采样的一半,Y 分量和 UV 分量按照 2 : 1 的比例采样。如果水平方向有 10 个像素点,那么采样了 10 个 Y 分量,而只采样了 5 个 UV 分量。

如下图所示:

在这里插入图片描述

其中,Y 分量用叉表示,UV 分量用圆圈表示。

举个例子 : 假如图像像素为:[Y0 U0 V0]、[Y1 U1 V1]、[Y2 U2 V2]、[Y3 U3 V3] 那么采样的码流为:Y0 U0 Y1 V1 Y2 U2 Y3 V3 其中,每采样过一个像素点,都会采样其 Y 分量,而 U、V 分量就会间隔一个采集一个。 最后映射出的像素点为 [Y0 U0 V1]、[Y1 U0 V1]、[Y2 U2 V3]、[Y3 U2 V3]

采样的码流映射为像素点,还是要满足每个像素点有 Y、U、V 三个分量。但是可以看到,第一和第二像素点公用了 U0、V1 分量,第三和第四个像素点公用了 U2、V3 分量,这样就节省了图像空间。

一张 1280 * 720 大小的图片,在 YUV 4:2:2 采样时的大小为:

(1280 * 720 * 8 + 1280 * 720 * 0.5 * 8 * 2)/ 8 / 1024 / 1024 = 1.76 MB 。

可以看到 YUV 4:2:2 采样的图像比 RGB 模型图像节省了三分之一的存储空间,在传输时占用的带宽也会随之减少。

4.4.3 YUV 4:2:0采样

​ YUV 4:2:0 采样,并不是指只采样 U 分量而不采样 V 分量。而是指,在每一行扫描时,只扫描一种色度分量(U 或者 V),和 Y 分量按照 2 : 1 的方式采样。比如,第一行扫描时,YU 按照 2 : 1 的方式采样,那么第二行扫描时,YV 分量按照 2:1 的方式采样。对于每个色度分量来说,它的水平方向和竖直方向的采样和 Y 分量相比都是 2:1 。

如下图所示:

在这里插入图片描述

其中,Y 分量用叉表示,UV 分量用圆圈表示。

假设第一行扫描了 U 分量,第二行扫描了 V 分量,那么需要扫描两行才能够组成完整的 UV 分量

举个例子 : 假设图像像素为: [Y0 U0 V0]、[Y1 U1 V1]、 [Y2 U2 V2]、 [Y3 U3 V3] [Y5 U5 V5]、[Y6 U6 V6]、 [Y7 U7 V7] 、[Y8 U8 V8] 那么采样的码流为:Y0 U0 Y1 Y2 U2 Y3 Y5 V5 Y6 Y7 V7 Y8 其中,每采样过一个像素点,都会采样其 Y 分量,而 U、V 分量就会间隔一行按照 2 : 1 进行采样。 最后映射出的像素点为: [Y0 U0 V5]、[Y1 U0 V5]、[Y2 U2 V7]、[Y3 U2 V7] [Y5 U0 V5]、[Y6 U0 V5]、[Y7 U2 V7]、[Y8 U2 V7]

从映射出的像素点中可以看到,四个 Y 分量是共用了一套 UV 分量,而且是按照 2*2 的小方格的形式分布的,相比 YUV 4:2:2 采样中两个 Y 分量共用一套 UV 分量,这样更能够节省空间。

一张 1280 * 720 大小的图片,在 YUV 4:2:0 采样时的大小为:

(1280 * 720 * 8 + 1280 * 720 * 0.25 * 8 * 2)/ 8 / 1024 / 1024 = 1.32 MB 。

可以看到 YUV 4:2:0 采样的图像比 RGB 模型图像节省了一半的存储空间,因此它也是比较主流的采样方式。

4.5 YUV存储格式

YUV 的存储格式,有两种:

planar 平面格式
    指先连续存储所有像素点的 Y 分量,然后存储 U 分量,最后是 V 分量。


packed 打包模式
    指每个像素点的 Y、U、V 分量是连续交替存储的。

根据采样方式和存储格式的不同,就有了多种 YUV 格式。这些格式主要是基于 YUV 4:2:2 和 YUV 4:2:0 采样。

常见的基于 YUV 4:2:2 采样的格式如下表:

YUV 4:2:2 采样YUYV 格式UYVY 格式YUV 422P 格式

常见的基于 YUV 4:2:0 采样的格式如下表:

YUV 4:2:0 采样YUV 4:2:0 采样YUV 420P 类型YV12 格式YU12 格式YUV 420SP 类型NV12 格式NV21 格式

更多的 YUV 格式信息参考这里:YUV pixel formats

4.5.1 基于YUV 4:2:2采样的格式

YUV 4:2:2 采样规定了 Y 和 UV 分量按照 2: 1 的比例采样,两个 Y 分量公用一组 UV 分量。

1.YUYV格式

YUYV 格式是采用打包格式进行存储的,指每个像素点都采用 Y 分量,但是每隔一个像素采样它的 UV 分量,排列顺序如下:

Y0 UO Y1 V0 Y2 U2 Y3 V2

Y0 和 Y1 公用 U0 V0 分量,Y2 和 Y3 公用 U2 V2 分量….

在这里插入图片描述
2.UYVY格式

UYVY 格式也是采用打包格式进行存储,它的顺序和 YUYV 相反,先采用 U 分量再采样 Y 分量,排列顺序如下:

U0 Y0 V0 Y1 U2 Y2 V2 Y3

Y0 和 Y1 公用 U0 V0 分量,Y2 和 Y3 公用 U2 V2 分量….

根据 UV 和 Y 的顺序还有其他格式,比如,YVYU 格式,VYUY 格式等等,原理大致一样了。
在这里插入图片描述
3.YUV 422P格式

​ YUV 422P 格式,又叫做 I422,采用的是平面格式进行存储,先存储所有的 Y 分量,再存储所有的 U 分量,再存储所有的 V 分量。

4.5.2 基于YUV 4:2:0 采样的格式

1.分类

基于 YUV 4:2:0 采样的格式主要有 YUV 420P 和 YUV 420SP 两种类型,每个类型又对应其他具体格式。

YUV 420P 类型
    YU12 格式YV12 格式


YUV 420SP 类型
    NV12 格式NV21 格式

YUV 420P 和 YUV 420SP 都是基于 Planar 平面模式 进行存储的,先存储所有的 Y 分量后, YUV420P 类型就会先存储所有的 U 分量或者 V 分量,而 YUV420SP 则是按照 UV 或者 VU 的交替顺序进行存储了,具体查看看下图:

YUV420SP 的格式:

在这里插入图片描述
YUV420P 的格式:

在这里插入图片描述
2.YU12 和 YV12 格式

YU12 和 YV12 格式都属于 YUV 420P 类型,即先存储 Y 分量,再存储 U、V 分量,区别在于:YU12 是先 Y 再 U 后 V,而 YV12 是先 Y 再 V 后 U 。

YV 12 的存储格式如下图所示:

在这里插入图片描述

YU 12 又称作 I420 格式,它的存储格式就是把 V 和 U 反过来了。

3.NV12 和 NV21 格式

NV12 和 NV21 格式都属于 YUV420SP 类型。它也是先存储了 Y 分量,但接下来并不是再存储所有的 U 或者 V 分量,而是把 UV 分量交替连续存储。

NV12 是 IOS 中有的模式,它的存储顺序是先存 Y 分量,再 UV 进行交替存储。

在这里插入图片描述
NV21 是 安卓 中有的模式,它的存储顺序是先存 Y 分量,在 VU 交替存储。

参考

https://www.cnblogs.com/qiqibaby/p/5252414.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值