经典机器学习
文章平均质量分 93
经典机器学习
Hali_Botebie
这个作者很懒,什么都没留下…
展开
-
什么是Label encoding?one-hot encoding ,label encoding两种编码该如何区分和使用?
label encoding 就是用标签进行编码的意思,即将原始特征值编码为自定义的数字标签完成量化编码过程。举例:假如有三种颜色特征:红、黄、蓝。 在利用机器学习的算法时一般需要进行向量化或者数字化。那么你可能想令 红=1,黄=2,蓝=3. 那么这样其实实现了标签编码,即给不同类别以标签。对于定类类型的数据,建议使用one-hot encoding。 定类类型就是纯分类,不排序,没有逻辑关系。比如性别分男和女,男女不存在任何逻辑关系,我们不能说男就比女好,或者相反。再者,中国各省市分类也可以用独热编码,转载 2022-06-15 15:56:44 · 3365 阅读 · 0 评论 -
什么是one-hot encoding?Pytorch中,将label变成one hot编码的两种方式
参考:独热编码(One-Hot Encoding)独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会转载 2022-06-15 15:47:19 · 3225 阅读 · 0 评论 -
4月4日 逻辑回归(Logistic Regression-LR)与SVM
参考了https://blog.csdn.net/b285795298/article/details/88683987假设您已经了解线性回归.又假设您十分了解sigmoid 函数.我们知道,线性回归是这样的:给定数据集, 其中,,线性回归试图学习到一个线性模型,尽可能地输出正确标记.吴恩达老师说:如果我们要用线性回归算法来解决一个分类问题,(对于分类,y 取值为 0 ...转载 2019-04-04 15:37:21 · 334 阅读 · 0 评论 -
4月3日 今天谈谈支持向量机SVM 与超平面
1、超平面 n 维空间中的超平面由下面的方程确定: n 维列向量,x 为平面上的点 n 维列向量,w 为平面上的法向量,决定了超平面的方向 b 是一个实数,代表超平面到原点的距离...原创 2019-04-03 20:07:54 · 762 阅读 · 0 评论 -
2月6日 KNN和Bayes和决策树学习总结
本文为课程对应的学习笔记地址http://www.auto-mooc.com/mooc/detail?mooc_id=F51511B0209FB73D81EAC260B63B2A21文章目录ML系统结构与实现方法1.0【传统】最近邻居法KNN-最简单ML1.1 核心算法1.2 sklearn库实现更简洁的代码1.3“鸢尾花类型”任务1.4手写数字”项目任务1.6 K值选择和整体要点思考?...原创 2020-02-06 19:59:47 · 322 阅读 · 0 评论 -
2月7日 SVM&线性回归&逻辑回归
本文为课程对应的学习笔记地址http://www.auto-mooc.com/mooc/detail?mooc_id=F51511B0209FB73D81EAC260B63B2A21课件资料存放地址:待更新文章目录4.1SVM4.2 基本算法4.3 SMO4.4 非线性什么问题使用怎样的核函数??之前的SVM的blog5.1 线性分类与回归回归性能使用闭形式求解线性回归的参数5.2 梯度下降...原创 2020-02-07 18:45:51 · 387 阅读 · 0 评论 -
2月14 大数据处理的基本算法
课程地址:http://www.auto-mooc.com/mooc/detail?mooc_id=BA91C867A68E92651FBF224828ECAE6E&major_id=E1007D8658541BD264785AA3709ADA25这是笔记!1.0数据基本算法1.1聚类算法类:相似元素的集合。分类是事先定义好类别,类别数固定;按照某种标准给队形贴标签,再根据标签...原创 2020-02-14 10:09:27 · 506 阅读 · 0 评论