训练样本选择
文章平均质量分 79
Hali_Botebie
这个作者很懒,什么都没留下…
展开
-
论文笔记:目标检测正负样本划分方法Adaptive Training Sample Selection (ATSS)原理,指出anchor base和anchor free的本质区别是训练样本
论文名称:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection论文地址:https://arxiv.org/abs/1912.02424代码地址:https://github.com/sfzhang15/ATSS。转载 2023-11-21 15:43:44 · 137 阅读 · 0 评论 -
【训练样本选择】ATSS 自适应训练样本选择:弥补基于锚点和无锚点检测之间的差距,CVPR2020(三)
CVPR2020中的文章ATSS揭露到anchor-based和anchor-free的目标检测算法之间的效果差异原因是由于正负样本的选择造成的。而在目标检测算法中正负样本的选择是由gt与anchor之间的匹配策略决定的。因此我们研究一下目前现有的匹配策略,并根据现状给出改进思路。转载 2023-08-17 11:19:03 · 92 阅读 · 0 评论 -
【训练样本选择】ATSS 自适应训练样本选择:弥补基于锚点和无锚点检测之间的差距,CVPR2020(二)
在训练对象检测器时,我们首先需要定义正样本和负样本进行分类,然后使用正样本进行回归。根据前面的分析,前者是至关重要的,无锚探测器FCOS改进了这一步。它引入了一种新的方法来定义正面和负面,比传统的基于IoU的策略取得了更好的性能。受此启发,我们深入研究了目标检测中最基本的问题:如何定义正训练样本和负训练样本,并提出了自适应训练样本选择(ATSS)。与传统的策略相比,我们的方法几乎没有超参数,对不同的设置具有鲁棒性。翻译 2023-08-17 10:21:53 · 595 阅读 · 0 评论 -
【训练样本选择】ATSS 自适应训练样本选择:弥补基于锚点和无锚点检测之间的差距,CVPR2020(一)
论文名字:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection中文论文名:通过自适应训练样本选择来弥补基于锚点和无锚点检测之间的差距作者:Shifeng Zhang, Cheng Chi, Yongqiang Yao来自:中科大自动化所模式识别重点实验室代码:https://github.com/sfzhang15/ATSS。翻译 2023-08-17 10:20:55 · 337 阅读 · 0 评论