视觉SLAM-ORB
文章平均质量分 86
视觉SLAM-ORB
Hali_Botebie
这个作者很懒,什么都没留下…
展开
-
ORB-SLAM3单目初始化,地图的初始化
源代码ORB_SLAM3(https://github.com/UZ-SLAMLab/ORB_SLAM3)https://mp.weixin.qq.com/s/vdnQfHoCIS5XZvYz2mCGNATrackMonocular是ORBSLAM单目视觉SLAM的追踪器接口,因此从这里入手。其中GrabImageMonocular下⾯有2个主要的函数:Frame::Frame()和Tracking::Track()。我会按照下⾯的框架流程来分解单⽬初始化过程,以便对整个流程有⽐较清晰的认识。记录了转载 2021-04-13 14:24:23 · 1190 阅读 · 0 评论 -
ORB-SLAM 解读(六)ORB特征点构建BoW
https://mp.weixin.qq.com/s/1KHYaYnbJ8RtnVkMiRhKBA什么是词袋?师兄:词袋(Bag of Words,BoW)最早应用场景是自然语言处理领域,其中的Word就表示文本里的单词。后来的研究者把词袋用在视觉SLAM领域,这时候的Word表示的是图像里的局部信息,比如特征点。注意在词袋里的单词是没有顺序的,也就是我们只关心某幅图像里有没有出现某个单词,出现了多少次,而不关心到底是在图像哪个位置出现的,也不关心单词出现的先后顺序,这样就大大简化了词袋模型的表达方式,转载 2021-04-13 14:23:44 · 1015 阅读 · 0 评论 -
基础矩阵,本质矩阵,单应性矩阵讲解,在ORB-SLAM相机的位姿初始化的应用
文章目录参考在ORB-SLAM相机的位姿初始化的应用理解基础矩阵,本质矩阵单应性矩阵Homogeneous附录:对极几何参考https://www.zhihu.com/question/51510464https://cloud.tencent.com/developer/article/1483521在ORB-SLAM相机的位姿初始化的应用其中ORB-SLAM点云地图中相机的位姿初始化,无论算法工作在平面场景,还是非平面场景下,都能够完成初始化的工作。其中主要是使用了适用于平面场景的单应性矩阵H转载 2021-09-22 17:00:14 · 1548 阅读 · 0 评论 -
ORB-SLAM 解读(五) 地图点投影进行特征匹配
https://mp.weixin.qq.com/s/rAKwPPm-Di3iqIpWi_qrmA师兄:ORB-SLAM2里用的最多的匹配方式就是投影匹配,根据不同的参数有多个重载函数,如下所示。不过它们的基本思想都差不多,我们后面以最复杂的一个函数(下面第1个函数)为例进行说明。于恒速模型跟踪,用前一个普通帧投影到当前帧进行匹配int SearchByProjection(Frame &CurrentFrame, const Frame &LastFrame, const float转载 2021-04-13 14:24:58 · 1583 阅读 · 0 评论 -
ORB-SLAM 解读(四) 单目初始化中特征匹配, 方向一致性检验
https://mp.weixin.qq.com/s/O2_wiwnWjiI2R4VVAzrbVQORBSLAM2中的特征匹配小白:师兄,ORB-SLAM2里有很多种特征匹配函数,看的我眼花缭乱,为什么有这么多种呢?怎么决定什么时候用哪一种特征匹配方法呢?师兄:确实是比较多,但是基本思想是类似的,而且很多函数多次重载。我把特征匹配的几个重要函数都列出来,做了说明,见下:// 通过词袋来搜索匹配,用于刚刚初始化后跟踪参考关键帧里的快速匹配int SearchByBoW(KeyFrame* pKF,F转载 2021-04-13 14:23:28 · 1382 阅读 · 0 评论 -
ORB-SLAM 解读(三) ORB特征点均匀化
https://mp.weixin.qq.com/s/hAmNzTjK42QzvJZWq6Pj4ghttps://zhuanlan.zhihu.com/p/61738607为什么需要特征点均匀化?小白:师兄,ORB-SLAM2 中代码里 ORB 特征点为什么没有直接调用 OpenCV 的函数呢?师兄:OpenCV 的 ORB 特征提取方法有个问题,就是特征点往往集中在纹理丰富的区域,而缺乏特征的区域特征点数量会少很多,这会带来不好的影响。比如。。。小白:比如这会导致一部分特征点是没有用的,本来一个转载 2021-04-13 14:23:12 · 3504 阅读 · 1 评论 -
ORB-SLAM 解读(二) ORB描述子如何实现旋转不变性
https://mp.weixin.qq.com/s/GwOKauS6xKtLeCL3KKfZ4w师兄:在关键点部分我们根据灰度质心法得到关键点的旋转角度后,在计算描述子之前我们会先用这个角度进行旋转。如下图所示P为圆形区域的几何中心,Q为圆形区域的灰度质心,我们的目的就是把下图左中像素旋转到和主方向坐标轴对齐。师兄:前面我们用Oriented FAST确定了关键点,下面就要对每个关键点的信息进行量化,计算其描述子。ORB特征点里的描述子是在BRIEF基础上进行改进的,称之为Steered BRIEF转载 2021-04-13 14:22:52 · 1634 阅读 · 0 评论 -
ORB-SLAM 解读(一)ORB关键点提取
【课程预定】ORB-SLAM 解读转载 2021-04-13 14:21:54 · 1621 阅读 · 0 评论 -
编译与运行ORB-SLAM的问题:1、unistd.h 2、virtual memory exhausted 3、internal compiler error 4、共享文件夹设置
源文件地址:https://github.com/raulmur/ORB_SLAM2安装的依赖C++11 or C++0x CompilerPangolinOpenCVEigen3DBoW2 and g2o (源文件自带Included in Thirdparty folder)出错1:这个是查看issue的解决方法adding #include <unistd.h> , you can put it in System.h instead. All ot原创 2020-06-28 15:04:15 · 640 阅读 · 0 评论