网络中的网络(NiN)

本文介绍了NiN块的概念,即在每个像素位置应用全连接层,相当于1x1卷积,用于调整通道数、保持空间信息。文章详细描述了一个包含多个NiN块的网络结构,包括最大池化、Dropout和AdaptiveAvgPool2d等组件。
摘要由CSDN通过智能技术生成

文章目录

NiN块

NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。果我们将权重连接到每个空间位置,我们可以将其视为1x1卷积层,或作为在每个像素位置上独立作用的全连接层。 从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征。

在这里插入图片描述
其卷积核的大小为1×1。这种卷积层的主要作用是改变输入特征图的通道数,同时保留空间信息不变。1×1卷积层在网络中通常用于增加或减少通道数、调整网络的深度、以及进行特征融合或分离。

def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())



net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值