被很简单的传输线问题折腾了很久,仔细研究传输线方程后好像有所得。
问题是从一个很简单的公式开始的:阻抗沿传输线变化的方程。Z=Z(l)是传输线长度的函数。
现在,设想我有一个信号和一个负载,在两者之间,我接10cm的传输线,和接12cm的传输线。如果按照阻抗变化的公式,在信号出去的地方我的阻抗是不同的,所以我这一点的电压也会不同。电压不同,电阻不同,岂不是功率不同?但最后负载得到的功率是不变的!
这就涉及到一个问题,这个阻抗变化的公式讲的是什么?
是这一点上的阻抗!
书上有个例子:四分之一波长的短路传输线,在另一端看就是开路,Zin=无穷大。问题是这个开路和我们一般理解的开路是一个意思吗?
不是!
这个开路仅仅指我这一点的电流是0。在其他地方我电流不是0。所以不能以为这个短路线真的等效成开路了。
有了这个认识,我们看传输线阻抗匹配的意义就很清晰了。我50欧姆的传输线,串联,就是我Smith chart上的点在围着等反射系数圆在走。等反射系数圆什么意思?模值不变,实部改变。就是说我这个点的入射电压大了,反射回去的就多一点;小了,就少一点。(准确地讲就是我反射的量和你入射的量实部都是会变的)但目的只有一个(准确讲是约束):功率不会变。线上跑的功率,就是我负载拿到的功率。
回到那个问题,10cm和12cm的线,如果有这么一个设备量这点电压的话确实是不一样的。但是,但是我会发现他电流也不一样,最后功率是一样的。这个不一样不影响我入射和反射的计算,因为这个取决于我负载。(源匹配情况下)。这就是为什么微波里面我们都是用功率。因为单独的电压或者电流没有意义!你用Zin的那个公式算,可以根据分压定理算到这一点的电压和电流。但这个不是我负载上的电压!
我负载上的电压是用反射系数来算的,对于匹配源,就是一次反射;不匹配源,就是多次反射的叠加。
电压上获得的功率,和我用Zin算的电压乘电流复共轭是一样的!
负载的匹配情况,决定了你入射和反射量的大小。这是你计算的reference。而线上单独某一点的量。只是这一点的值,没有太大意义。
所以射频里面我们一般都用功率衡量,所有的指标基本上都是用功率导出来的。
最后提一个常见栗子:四分之一波长阻抗变换线。这个东西看似很邪门,实际上就是两段不同的介质接触以后,我在这一点处形成了反射叠加等于0的效果,入射全部被吃进去了。你在负载上看,还是不匹配的,but!跑到这一段四分之一线的前面,在这一点处我匹配了!意味着所有的反射波最后统统还是跑不出去,回到了我的负载上,这就是它这个阻抗变换的奥妙。
四分之一波长阻抗变换在Smithchart上看(前提负载实阻抗)就是实轴上这个点画一个圆直接绕到了圆心。具体的推导后面再说