文章目录
Introduction to Ordinary Diffenrential Equations
Differential Equation with constant coefficients
Characteristic equation(homogeneous)
e q u a t i o n : a y ′ ′ 2 + b y + c = 0 c h a r a c t e r i s t i c : a r 2 + b r 2 + c = 0 equation:ay''^2+by+c=0\\ characteristic:ar^2+br^2+c=0 equation:ay′′2+by+c=0characteristic:ar2+br2+c=0
-
r
r
r are two real solutions:
y 1 = e − r 1 x y 2 = e r 2 x y_1=e^{-r_1x} \quad y_2=e^{r_2x} y1=e−r1xy2=er2x -
r
r
r are repeated solutions:
y 1 = e − r 1 x y 2 = x e r 1 x y_1=e^{-r_1x} \quad y_2=xe^{r_1x} y1=e−r1xy2=xer1x -
r
r
r are two complex solutions:
r 1 = a + b i r 2 = a − b i y 1 = e a x c o s b x y 2 = e a x s i n b x r_1=a + bi \quad r_2=a-bi\\ y_1=e^{ax}cosbx \quad y_2=e^{ax}sinbx r1=a+bir2=a−biy1=eaxcosbxy2=eaxsinbx
y = c 1 y 1 + c 2 y 2 y = c_1y_1+c_2y_2 y=c1y1+c2y2
补充:欧拉公式
e i x = cos x + i sin x e^{i x}=\cos x+i \sin x eix=cosx+isinx
sin x = e i x − e − i x 2 i \sin x=\frac{e^{i x}-e^{-i x}}{2 i} sinx=2ieix−e−ix
cos x = e i x + e − i x 2 \cos x=\frac{e^{i x}+e^{-i x}}{2} cosx=2eix+e−ix
双曲函数(Hyperbolic functions)
sinh ( x ) = e x − e − x 2 \sinh (x)=\frac{e^x-e^{-x}}{2} sinh(x)=2ex−e−x
cosh ( x ) = e x + e − x 2 \cosh (x)=\frac{e^x+e^{-x}}{2} cosh(x)=2ex+e−x
Differential Equation with non-constant coefficients
Euler equation(homogeneous)
e
q
u
a
t
i
o
n
:
a
x
2
y
′
′
+
b
x
y
′
+
c
y
=
0
y
=
x
r
y
′
=
r
x
r
−
1
y
′
′
=
r
(
r
−
1
)
x
r
−
2
a
x
2
(
r
(
r
−
1
)
)
x
r
−
2
+
b
x
(
r
x
r
−
1
)
+
c
x
r
=
0
a
(
r
(
r
−
1
)
+
b
r
+
c
)
x
r
=
0
equation:ax^2y''+bxy'+cy=0\\ y=x^r \quad y'=rx^{r-1} \quad y''=r(r-1)x^{r-2}\\ a x^2(r(r-1)) x^{r-2}+b x\left(r x^{r-1}\right)+c x^r=0 \\ a(r(r-1)+b r+c) x^r=0
equation:ax2y′′+bxy′+cy=0y=xry′=rxr−1y′′=r(r−1)xr−2ax2(r(r−1))xr−2+bx(rxr−1)+cxr=0a(r(r−1)+br+c)xr=0
⇒
ar
(
r
−
1
)
+
b
r
+
c
=
0
\Rightarrow\operatorname{ar}(r-1)+b r+c=0
⇒ar(r−1)+br+c=0
- two distinct roots
y 1 = x r 1 y 2 = x r 2 y_1=x^{r_1} \quad y_2=x^{r_2} y1=xr1y2=xr2 - repeated roots
y 1 = x r 1 y 2 = x r 1 l n x y_1=x^{r_1} \quad y_2=x^{r_1}lnx y1=xr1y2=xr1lnx - two complex roots
x λ + μ i = e ( λ + μ i ) ln x = e λ ln x ⋅ e μ i ln x = x λ ⋅ e μ i ln x = x λ ( cos ( μ ln x ) + i sin ( μ ln x ) ) \begin{aligned} x^{\lambda+\mu i}&=e^{(\lambda+\mu i) \ln x} \\ &=e^{\lambda \ln x} \cdot e^{\mu i \ln x} \\ & =x^\lambda \cdot e^{\mu i \ln x} \\ & =x^\lambda(\cos (\mu \ln x)+i \sin (\mu \ln x)) \end{aligned} xλ+μi=e(λ+μi)lnx=eλlnx⋅eμilnx=xλ⋅eμilnx=xλ(cos(μlnx)+isin(μlnx))
Integrating Factor(first order + inhomogeneous)
e
q
u
a
t
i
o
n
:
y
′
+
Q
(
x
)
y
=
f
(
x
)
(
首项系数为
1
)
equation: y'+Q(x)y = f(x)\textcolor{red}{(首项系数为1)}
equation:y′+Q(x)y=f(x)(首项系数为1)
μ
=
e
∫
Q
(
x
)
d
x
(
μ
y
)
′
=
f
(
x
)
μ
μ
y
=
∫
f
(
x
)
μ
d
x
(
不定积分有常数项!!!
)
y
=
μ
−
1
∫
f
(
x
)
μ
d
x
\mu = e^{\int Q(x)dx}\\ (\mu y)'= f(x)\mu \\ \mu y = \int f(x) \mu dx \textcolor{red}{(不定积分有常数项!!!)} \\ y=\mu ^{-1} \int f(x) \mu dx
μ=e∫Q(x)dx(μy)′=f(x)μμy=∫f(x)μdx(不定积分有常数项!!!)y=μ−1∫f(x)μdx
Green function (inhomogeneous)
e
q
u
a
t
i
o
n
:
y
′
′
+
P
(
x
)
y
′
+
Q
(
x
)
y
=
f
(
x
)
(
首项系数为
1
)
equation: y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)\textcolor{red}{(首项系数为1)}
equation:y′′+P(x)y′+Q(x)y=f(x)(首项系数为1)
The method is called Green function
y
p
(
x
)
=
∫
x
0
x
G
(
x
,
t
)
f
(
t
)
d
t
G
(
x
,
t
)
=
y
1
(
t
)
y
2
(
x
)
−
y
1
(
x
)
y
2
(
t
)
w
(
t
)
\begin{aligned} y_p(x) & =\int_{x_0}^x G(x, t) f(t) d t \\ G(x, t) & =\frac{y_1(t) y_2(x)-y_1(x) y_2(t)}{w(t)} \end{aligned}
yp(x)G(x,t)=∫x0xG(x,t)f(t)dt=w(t)y1(t)y2(x)−y1(x)y2(t)
y
1
,
y
2
y_1, y_2
y1,y2 are the solution of homogeneous ODE
y
′
′
+
P
(
x
)
′
+
Q
(
x
)
y
=
0
w
(
y
1
(
t
)
,
y
2
(
t
)
)
=
∣
y
1
(
t
)
y
2
(
t
)
y
1
′
(
t
)
y
2
′
(
t
)
∣
≠
0
\begin{gathered} y^{\prime \prime}+P(x)^{\prime}+Q(x) y=0 \\ w\left(y_1(t), y_2(t)\right)=\left|\begin{array}{ll} y_1(t) & y_2(t) \\ y_1^{\prime}(t) & y_2^{\prime}(t) \end{array}\right| \neq 0 \end{gathered}
y′′+P(x)′+Q(x)y=0w(y1(t),y2(t))=
y1(t)y1′(t)y2(t)y2′(t)
=0
y
=
y
∗
+
y
p
(
y
∗
i
s
g
e
n
e
r
a
l
s
o
l
u
t
i
o
n
)
y = y^* + y_p (y^* \ is\ general\ solution)
y=y∗+yp(y∗ is general solution)
Green function with IVP(initial value problem)
y
(
x
0
)
=
y
0
y
′
(
x
0
)
=
y
1
y\left(x_0\right)=y_0 \quad y'\left(x_0\right)=y_1
y(x0)=y0y′(x0)=y1
(
?
常数是在通解里直接算还是按照最后的
y
算的
,
我不管,按最后
y
算。
V
a
h
i
d
你害人不浅
)
\textcolor{blue}{(?常数是在通解里直接算还是按照最后的y算的,我不管,按最后y算。Vahid你害人不浅)}
(?常数是在通解里直接算还是按照最后的y算的,我不管,按最后y算。Vahid你害人不浅)
(
常数是在通解里直接算的
)
\textcolor{red}{(常数是在通解里直接算的)}
(常数是在通解里直接算的)
Laplace Transform
For
f
:
[
0
,
∞
)
→
R
f:[0, \infty) \rightarrow \mathbb{R}
f:[0,∞)→R.
L
(
f
(
t
)
)
=
L
⟨
f
(
t
)
}
=
∫
0
∞
e
−
s
t
f
(
t
)
d
t
\mathscr{L}(f(t))=\mathscr{L}\langle f(t)\}=\int_0^{\infty} e^{-s t} f(t) d t
L(f(t))=L⟨f(t)}=∫0∞e−stf(t)dt
L
{
f
′
(
t
)
}
=
∫
0
∞
e
−
s
t
f
′
(
t
)
d
t
=
s
F
(
s
)
−
f
(
0
)
L
{
f
′
′
(
t
)
}
=
∫
0
∞
e
−
s
t
f
′
′
(
t
)
d
t
=
s
2
F
(
s
)
−
s
f
(
0
)
−
f
′
(
0
)
\mathscr{L}\left\{f^{\prime}(t)\right\}=\int_0^{\infty} e^{-s t} f^{\prime}(t) d t=s F(s)-f(0) \\ \mathscr{L}\left\{f^{\prime \prime}(t)\right\}=\int_0^{\infty} e^{-s t} f^{\prime \prime}(t) d t=s^2 F(s)-s f(0)-f^{\prime}(0)
L{f′(t)}=∫0∞e−stf′(t)dt=sF(s)−f(0)L{f′′(t)}=∫0∞e−stf′′(t)dt=s2F(s)−sf(0)−f′(0)
Proof: integral by part
L ( f ( t ) ) = ∫ 0 ∞ e − s t f ′ ( t ) d t = ∫ 0 ∞ e − s t d f ( t ) = e − s t f ( t ) ∣ 0 ∞ 0 − ∫ 0 ∞ f ( t ) d e − s t = e − s t f ( t ) ∣ 0 ∞ + s ∫ 0 ∞ e − s t f ( t ) d t = e − s ∞ ⏟ 0 f ( ∞ ) − e − s ( 0 ) f ( 0 ) + ∫ 0 ∞ e − s t f ( t ) d t ⏟ L { f ( t ) } = − f ( 0 ) + s L { ( f ( t ) } = s F ( s ) − f ( 0 ) \begin{aligned} \mathscr{L}(f(t))&=\int_0^{\infty} e^{-s t} f^{\prime}(t) d t \\ &= \int_0^{\infty} e^{-s t}d f(t)\\ &= \left. e^{-s t} f(t)\right|_0 ^{\infty}0-\int_0^{\infty} f(t) d e^{-s t} \\ &= \left. e^{-s t} f(t)\right|_0 ^{\infty}+s \int_0^{\infty} e^{-s t} f(t) d t \\ & =\underbrace{ e^{-s \infty}}_0 f(\infty)-e^{-s(0)} f(0)+\underbrace{\int_0^{\infty}e^{-st} f(t) d t}_{\mathscr{L}\{f(t)\}} \\ & =-f(0)+s \mathscr{L}\{(f(t)\}\\ &=s F(s)-f(0) \end{aligned} L(f(t))=∫0∞e−stf′(t)dt=∫0∞e−stdf(t)=e−stf(t) 0∞0−∫0∞f(t)de−st=e−stf(t) 0∞+s∫0∞e−stf(t)dt=0 e−s∞f(∞)−e−s(0)f(0)+L{f(t)} ∫0∞e−stf(t)dt=−f(0)+sL{(f(t)}=sF(s)−f(0)
L { f ′ ′ ( t ) } = ∫ 0 ∞ e − s t f ′ ′ ( t ) d t = e − s t f ′ ( t ) ∣ 0 ∞ + s ∫ 0 ∞ f ′ ( t ) e − s t d t = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) . \begin{aligned} \mathscr{L}\left\{f^{\prime \prime}(t)\right\}&=\int_0^{\infty} e^{-s t} f^{\prime \prime}(t) d t \\ &=\left.e^{-s t} f^{\prime}(t)\right|_0 ^{\infty}+s \int_0^{\infty} f^{\prime}(t) e^{-s t} d t\\ &=s^2 F(s)-s f(0)-f^{\prime}(0) . \end{aligned} L{f′′(t)}=∫0∞e−stf′′(t)dt=e−stf′(t) 0∞+s∫0∞f′(t)e−stdt=s2F(s)−sf(0)−f′(0).
example
- Find the given inverse
a. L − 1 { 4 s 4 s 2 + 1 } \mathcal{L}^{-1}\left\{\frac{4 s}{4 s^2+1}\right\} L−1{4s2+14s}
b. L − 1 { 1 s 2 + 3 s } \mathcal{L}^{-1}\left\{\frac{1}{s^2+3 s}\right\} L−1{s2+3s1}
c. L − 1 { s s 2 + 2 s − 3 } \mathcal{L}^{-1}\left\{\frac{s}{s^2+2 s-3}\right\} L−1{s2+2s−3s}
d. L − 1 { s ( s − 2 ) ( s − 3 ) ( s − 6 ) } \mathcal{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\} L−1{(s−2)(s−3)(s−6)s}
Solution.
a. L − 1 { 1 4 s 2 + 1 } = L − 1 { 1 2 ⋅ 1 / 2 s 2 + 1 / 4 } = 1 2 sin 1 2 t \mathcal{L}^{-1}\left\{\frac{1}{4 s^2+1}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1 / 2}{s^2+1 / 4}\right\} =\frac{1}{2} \sin \frac{1}{2} t L−1{4s2+11}=L−1{21⋅s2+1/41/2}=21sin21t
b. L − 1 { 1 s 2 + 3 s } = L − 1 { 1 s ( s + 3 ) } = L − 1 { A s + B ( s + 3 ) } = L − 1 { 1 3 ⋅ 1 s − 1 3 ⋅ 1 s + 3 } = 1 3 − 1 3 e − 3 t \mathcal{L}^{-1}\left\{\frac{1}{s^2+3 s}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{s(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{A}{s}+\frac{B}{(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s}-\frac{1}{3} \cdot \frac{1}{s+3}\right\} =\frac{1}{3}-\frac{1}{3} e^{-3 t} L−1{s2+3s1}=L−1{s(s+3)1}=L−1{sA+(s+3)B}=L−1{31⋅s1−31⋅s+31}=31−31e−3t
c. L − 1 { s s 2 + 2 s − 3 } = L − 1 { s ( s − 1 ) ( s + 3 ) } = L − 1 { 1 4 ⋅ 1 s − 1 + 3 4 ⋅ 1 s + 3 } = 1 4 e t + 3 4 e − 3 t \mathcal{L}^{-1}\left\{\frac{s}{s^2+2 s-3}\right\} =\mathcal{L}^{-1}\left\{\frac{s}{(s-1)(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{4} \cdot \frac{1}{s-1}+\frac{3}{4} \cdot \frac{1}{s+3}\right\} =\frac{1}{4} e^t+\frac{3}{4} e^{-3 t} L−1{s2+2s−3s}=L−1{(s−1)(s+3)s}=L−1{41⋅s−11+43⋅s+31}=41et+43e−3t
d. L − 1 { s ( s − 2 ) ( s − 3 ) ( s − 6 ) } = L − 1 { 1 2 ⋅ 1 s − 2 − 1 s − 3 + 1 2 ⋅ 1 s − 6 } = 1 2 e 2 t − e 3 t + 1 2 e 6 t \mathcal{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s-2}-\frac{1}{s-3}+\frac{1}{2} \cdot \frac{1}{s-6}\right\}=\frac{1}{2} e^{2 t}-e^{3 t}+\frac{1}{2}e^{6t} L−1{(s−2)(s−3)(s−6)s}=L−1{21⋅s−21−s−31+21⋅s−61}=21e2t−e3t+21e6t
- Use the Laplace transform to solve the given initial-value problem.
y ′ ′ − 2 y ′ + 5 y = 1 + t , y ( 0 ) = 0 , y ′ ( 0 ) = 4 y^{\prime \prime}-2 y^{\prime}+5 y=1+t, \quad y(0)=0, y^{\prime}(0)=4 y′′−2y′+5y=1+t,y(0)=0,y′(0)=4
Solution. The Laplace transform of the differential cquation is
Solving for L { y } \mathcal{L}\{y\} L{y} we obtain
L { y } = 4 s 2 + s + 1 s 2 ( s 2 − 2 s + 5 ) = 7 25 1 s + 1 5 1 s 2 + − 7 s / 25 − 109 / 25 s 2 − 2 s + 5 = 7 25 1 s + 1 5 1 s 2 − 7 25 s − 1 ( s − 1 ) 2 + 2 2 + 51 25 2 ( s − 1 ) 2 + 2 2 \begin{aligned} \mathcal{L}\{y\} & =\frac{4 s^2+s+1}{s^2\left(s^2-2 s+5\right)}=\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^2}+\frac{-7 s / 25-109 / 25}{s^2-2 s+5} \\ & =\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^2}-\frac{7}{25} \frac{s-1}{(s-1)^2+2^2}+\frac{51}{25} \frac{2}{(s-1)^2+2^2} \end{aligned} L{y}=s2(s2−2s+5)4s2+s+1=257s1+51s21+s2−2s+5−7s/25−109/25=257s1+51s21−257(s−1)2+22s−1+2551(s−1)2+222
P32 7
- Use the Laplace transforms to solve
y ′ ′ ( x ) − 2 y ′ ( x ) − 3 y ( x ) = x e x subject to { y ( 0 ) = 0 y ′ ( 0 ) = 0 y^{\prime \prime}(x)-2 y^{\prime}(x)-3 y(x)=x e^x \quad \text { subject to }\left\{\begin{array}{l} y(0)=0 \\ y^{\prime}(0)=0 \end{array}\right. y′′(x)−2y′(x)−3y(x)=xex subject to {y(0)=0y′(0)=0
Solution. Applying Laplace transforms to the ODE gives
L [ y ′ ′ ( x ) − 2 y ′ ( x ) − 3 y ( x ) ] ( s ) = L [ x e x ] ( s ) \mathscr{L}\left[y^{\prime \prime}(x)-2 y^{\prime}(x)-3 y(x)\right](s)=\mathscr{L}\left[x e^x\right](s) L[y′′(x)−2y′(x)−3y(x)](s)=L[xex](s)
Then, we have
s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) − 2 ( s Y ( s ) − y ( 0 ) ) − 3 Y ( s ) = 1 ( s − 1 ) 2 s^2 Y(s)-s y(0)-y^{\prime}(0)-2(s Y(s)-y(0))-3 Y(s)=\frac{1}{(s-1)^2} s2Y(s)−sy(0)−y′(0)−2(sY(s)−y(0))−3Y(s)=(s−1)21
By using the initial conditions:
( s 2 − 2 s − 3 ) Y ( s ) = 1 ( s − 1 ) 2 \left(s^2-2 s-3\right) Y(s)=\frac{1}{(s-1)^2} (s2−2s−3)Y(s)=(s−1)21
Finally
Y ( s ) = 1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) Y(s)=\frac{1}{(s-1)^2(s+1)(s-3)} Y(s)=(s−1)2(s+1)(s−3)1
where Y ( s ) = L [ y ( x ) ] ( s ) Y(s)=\mathscr{L}[y(x)](s) Y(s)=L[y(x)](s). Let
1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) = A s + B ( s − 1 ) 2 + C s + 1 + D s − 3 ( ∗ ) \frac{1}{(s-1)^2(s+1)(s-3)}=\frac{A s+B}{(s-1)^2}+\frac{C}{s+1}+\frac{D}{s-3}\qquad (*) (s−1)2(s+1)(s−3)1=(s−1)2As+B+s+1C+s−3D(∗)
- Multiplying ( ∗ ) (*) (∗) by s − 3 s-3 s−3 then letting s = 3 s=3 s=3 we have D = 1 16 D=\frac{1}{16} D=161.
- Multiplying ( ∗ ) (*) (∗) by s + 1 s+1 s+1 then letting s = − 1 s=-1 s=−1 we have C = − 1 16 C=\frac{-1}{16} C=16−1.
- Having D = 1 16 D=\frac{1}{16} D=161 and C = − 1 16 C=\frac{-1}{16} C=16−1 and let s = 0 s=0 s=0 in ( ∗ ) (*) (∗) we have B = − 1 4 B=\frac{-1}{4} B=4−1.
- Multiplying ( ∗ ) (*) (∗) by ( s − 1 ) 2 (s-1)^2 (s−1)2 then let s = 1 s=1 s=1 we have A + B = − 1 4 A+B=\frac{-1}{4} A+B=4−1 then A = 0 A=0 A=0.
Hence
y ( x ) = L − 1 [ Y ( s ) ] ( x ) = L − 1 [ 1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) ] ( x ) = L − 1 [ − 1 / 4 ( s − 1 ) 2 + − 1 / 16 s + 1 + 1 / 16 s − 3 ] ( x ) = − 1 4 x e x − 1 16 e − x + 1 16 e 3 x \begin{aligned} y(x) & =\mathscr{L}^{-1}[Y(s)](x)=\mathscr{L}^{-1}\left[\frac{1}{(s-1)^2(s+1)(s-3)}\right](x) \\ & =\mathscr{L}^{-1}\left[\frac{-1 / 4}{(s-1)^2}+\frac{-1 / 16}{s+1}+\frac{1 / 16}{s-3}\right](x) \\ & =\frac{-1}{4} x e^x-\frac{1}{16} e^{-x}+\frac{1}{16} e^{3 x} \end{aligned} y(x)=L−1[Y(s)](x)=L−1[(s−1)2(s+1)(s−3)1](x)=L−1[(s−1)2−1/4+s+1−1/16+s−31/16](x)=4−1xex−161e−x+161e3x
Power series for Solving ODEs
#Definition
(Power series) The power series in
(
x
−
a
)
(x-a)
(x−a) is an infinite series of the form
∑
n
=
0
∞
c
n
(
x
−
a
)
n
=
c
0
+
c
1
(
x
−
a
)
+
c
2
(
x
−
a
)
2
+
⋯
\sum_{n=0}^{\infty} c_n(x-a)^n=c_0+c_1(x-a)+c_2(x-a)^2+\cdots
n=0∑∞cn(x−a)n=c0+c1(x−a)+c2(x−a)2+⋯
Convergence
Interval of Convergence:
It is the set of all real numbers x x x for which the series is convergent.
Radius of convergence:
If
R
>
0
R>0
R>0 (radius of convergent)
∣
x
−
a
∣
<
R
|x-a|<R
∣x−a∣<R:the a power series is convergent
∣
x
−
a
∣
>
R
|x-a|>R
∣x−a∣>R:divergent
Ratio Test
L = lim n → ∞ ∣ a n + 1 a n ∣ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right| L=n→∞lim anan+1
0
<
L
<
1
0<L<1
0<L<1: then the power series is convergent
L
>
1
L>1
L>1: the power series is divergent.
L
=
1
L=1
L=1: the test is without any result.
Power series define a function
Taylor series
∑
n
=
0
∞
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
=
f
(
a
)
+
f
′
(
a
)
1
!
(
x
−
a
)
+
f
′
′
(
a
)
1
!
(
x
−
a
)
2
+
⋯
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^n=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{1 !}(x-a)^2+\cdots
n=0∑∞n!f(n)(a)(x−a)n=f(a)+1!f′(a)(x−a)+1!f′′(a)(x−a)2+⋯
Maclaurin series(在
x
=
0
x=0
x=0处展开)
∑
n
=
0
∞
f
(
n
)
(
0
)
n
!
x
n
=
f
(
0
)
+
f
′
(
0
)
1
!
x
+
f
′
′
(
0
)
1
!
x
2
+
⋯
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^n=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{1 !} x^2+\cdots
n=0∑∞n!f(n)(0)xn=f(0)+1!f′(0)x+1!f′′(0)x2+⋯
Maclaurin Series
Interval
of Convergence
e
x
=
1
+
x
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
=
∑
n
=
0
∞
1
n
!
x
n
(
−
∞
,
∞
)
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
(
−
∞
,
∞
)
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
(
−
∞
,
∞
)
tan
−
1
x
=
x
−
x
3
3
+
x
5
5
−
x
7
7
+
⋯
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
x
2
n
+
1
(
−
1
,
1
]
cosh
x
=
1
+
x
2
2
!
+
x
4
4
!
+
x
6
6
!
+
⋯
=
∑
n
=
0
∞
1
(
2
n
)
!
x
2
n
(
−
∞
,
∞
)
sinh
x
=
x
+
x
3
3
!
+
x
5
5
!
+
x
7
7
!
+
⋯
=
∑
n
=
0
∞
1
(
2
n
+
1
)
!
x
2
n
+
1
(
−
1
,
1
]
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
⋯
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
x
n
(
−
1
,
1
)
1
1
−
x
=
1
+
x
+
x
2
+
x
3
+
⋯
=
∑
n
=
0
∞
x
n
\begin{array}{c|c} \text { Maclaurin Series } & \begin{array}{c} \text { Interval } \\ \text { of Convergence } \end{array} \\ \hline e^x=1+\frac{x}{1 !}+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n !} x^n & (-\infty, \infty) \\[4mm] \cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n) !} x^{2 n} & (-\infty, \infty) \\[4mm] \sin x=x-\frac{x^3}{3 !}+\frac{x^5}{5 !}-\frac{x^7}{7 !}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n+1) !} x^{2 n+1} & (-\infty, \infty) \\[4mm] \tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{2 n+1} x^{2 n+1} & (-1,1] \\[4mm] \cosh x=1+\frac{x^2}{2 !}+\frac{x^4}{4 !}+\frac{x^6}{6 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n) !} x^{2 n} & (-\infty, \infty) \\[4mm] \sinh x=x+\frac{x^3}{3 !}+\frac{x^5}{5 !}+\frac{x^7}{7 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1) !} x^{2 n+1} & (-1,1] \\[4mm] \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n & (-1,1) \\[4mm] \frac{1}{1-x}=1+x+x^2+x^3+\cdots=\sum_{n=0}^{\infty} x^n & \end{array}
Maclaurin Series ex=1+1!x+2!x2+3!x3+⋯=∑n=0∞n!1xncosx=1−2!x2+4!x4−6!x6+⋯=∑n=0∞(2n)!(−1)nx2nsinx=x−3!x3+5!x5−7!x7+⋯=∑n=0∞(2n+1)!(−1)nx2n+1tan−1x=x−3x3+5x5−7x7+⋯=∑n=0∞2n+1(−1)nx2n+1coshx=1+2!x2+4!x4+6!x6+⋯=∑n=0∞(2n)!1x2nsinhx=x+3!x3+5!x5+7!x7+⋯=∑n=0∞(2n+1)!1x2n+1ln(1+x)=x−2x2+3x3−4x4+⋯=∑n=1∞n(−1)n+1xn1−x1=1+x+x2+x3+⋯=∑n=0∞xn Interval of Convergence (−∞,∞)(−∞,∞)(−∞,∞)(−1,1](−∞,∞)(−1,1](−1,1)
Solve ODE
Regular singular point
P ( x ) y ′ ′ + Q ( x ) y ′ + R ( x ) y = 0 y ′ ′ + Q ( x ) P ( x ) y ′ + R ( x ) P ( x ) y = 0 \begin{aligned} & P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \\ & y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y=0 \end{aligned} P(x)y′′+Q(x)y′+R(x)y=0y′′+P(x)Q(x)y′+P(x)R(x)y=0
If
x
0
x_0
x0 is our singular point.
P
(
x
0
)
=
0
P\left(x_0\right)=0
P(x0)=0. Then
lim
x
→
x
0
(
x
−
x
0
)
Q
(
x
)
p
(
x
)
lim
x
→
x
0
(
x
−
x
0
)
2
R
(
x
)
P
(
x
)
i
s
f
i
n
i
t
e
\lim _{x \rightarrow x_0}\left(x-x_0\right) \frac{Q(x)}{p(x)}\\[4mm] \lim _{x \rightarrow x_0}\left(x-x_0\right)^2 \frac{R(x)}{P(x)}\\ is\ finite
x→x0lim(x−x0)p(x)Q(x)x→x0lim(x−x0)2P(x)R(x)is finite
Frobenius’ Throrem
y = ∑ 0 ∞ a n ( x − x 0 ) n . . . ( 1 ) ( r e g u l a r s i n g u l a r p o i n t ) y = ∑ 0 ∞ a n ( x − x 0 ) n + r . . . ( 2 ) y = \sum_0^\infty a_n(x-x_0)^n...(1)\\ (regular\ singular\ point)y = \sum_0^\infty a_n(x-x_0)^{n+r}...(2) y=0∑∞an(x−x0)n...(1)(regular singular point)y=0∑∞an(x−x0)n+r...(2)
Fourier Series
Arbitrary Period(T=2L)
f
(
x
)
=
a
0
+
∑
n
=
1
∞
(
a
n
cos
n
π
L
x
+
b
n
sin
n
π
L
x
)
f(x)=a_0+\sum_{n=1}^{\infty}\left(a_n \cos \frac{n \pi}{L} x+b_n \sin \frac{n \pi}{L} x\right)
f(x)=a0+n=1∑∞(ancosLnπx+bnsinLnπx)
a
0
=
1
2
L
∫
−
L
L
f
(
x
)
d
x
a
n
=
1
L
∫
−
L
L
f
(
x
)
cos
n
π
x
L
d
x
n
=
1
,
2
,
⋯
b
n
=
1
L
∫
−
L
L
f
(
x
)
sin
n
π
x
L
d
x
n
=
1
,
2
,
⋯
\begin{aligned} a_0&=\frac{1}{2 L} \int_{-L}^L f(x) d x \\ a_n&=\frac{1}{L} \int_{-L}^L f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2, \cdots\\ b_n&=\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n \pi x}{L} d x \quad n=1,2, \cdots \end{aligned}
a0anbn=2L1∫−LLf(x)dx=L1∫−LLf(x)cosLnπxdxn=1,2,⋯=L1∫−LLf(x)sinLnπxdxn=1,2,⋯
even
a 0 = 1 2 L ∫ − L L f ( x ) d x a n = 1 L ∫ − L L f ( x ) cos n π x L d x n = 1 , 2 , ⋯ b n = 0 \begin{aligned} a_0&=\frac{1}{2 L} \int_{-L}^L f(x) d x \\ a_n&=\frac{1}{L} \int_{-L}^L f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2, \cdots\\ b_n&=0 \end{aligned} a0anbn=2L1∫−LLf(x)dx=L1∫−LLf(x)cosLnπxdxn=1,2,⋯=0
odd
a 0 = 0 a n = 0 b n = 1 L ∫ − L L f ( x ) sin n π x L d x n = 1 , 2 , ⋯ \begin{aligned} a_0&=0 \\ a_n&=0 \\ b_n&=\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n \pi x}{L} d x \quad n=1,2, \cdots \end{aligned} a0anbn=0=0=L1∫−LLf(x)sinLnπxdxn=1,2,⋯