ODE-仅针对期末考试

Introduction to Ordinary Diffenrential Equations

Differential Equation with constant coefficients

Characteristic equation(homogeneous)

e q u a t i o n : a y ′ ′ 2 + b y + c = 0 c h a r a c t e r i s t i c : a r 2 + b r 2 + c = 0 equation:ay''^2+by+c=0\\ characteristic:ar^2+br^2+c=0 equation:ay′′2+by+c=0characteristic:ar2+br2+c=0

  1. r r r are two real solutions:
    y 1 = e − r 1 x y 2 = e r 2 x y_1=e^{-r_1x} \quad y_2=e^{r_2x} y1=er1xy2=er2x
  2. r r r are repeated solutions:
    y 1 = e − r 1 x y 2 = x e r 1 x y_1=e^{-r_1x} \quad y_2=xe^{r_1x} y1=er1xy2=xer1x
  3. r r r are two complex solutions:
    r 1 = a + b i r 2 = a − b i y 1 = e a x c o s b x y 2 = e a x s i n b x r_1=a + bi \quad r_2=a-bi\\ y_1=e^{ax}cosbx \quad y_2=e^{ax}sinbx r1=a+bir2=abiy1=eaxcosbxy2=eaxsinbx
    y = c 1 y 1 + c 2 y 2 y = c_1y_1+c_2y_2 y=c1y1+c2y2
    补充:欧拉公式
    e i x = cos ⁡ x + i sin ⁡ x e^{i x}=\cos x+i \sin x eix=cosx+isinx
    sin ⁡ x = e i x − e − i x 2 i \sin x=\frac{e^{i x}-e^{-i x}}{2 i} sinx=2ieixeix
    cos ⁡ x = e i x + e − i x 2 \cos x=\frac{e^{i x}+e^{-i x}}{2} cosx=2eix+eix
    双曲函数(Hyperbolic functions)
    sinh ⁡ ( x ) = e x − e − x 2 \sinh (x)=\frac{e^x-e^{-x}}{2} sinh(x)=2exex
    cosh ⁡ ( x ) = e x + e − x 2 \cosh (x)=\frac{e^x+e^{-x}}{2} cosh(x)=2ex+ex

Differential Equation with non-constant coefficients

Euler equation(homogeneous)

e q u a t i o n : a x 2 y ′ ′ + b x y ′ + c y = 0 y = x r y ′ = r x r − 1 y ′ ′ = r ( r − 1 ) x r − 2 a x 2 ( r ( r − 1 ) ) x r − 2 + b x ( r x r − 1 ) + c x r = 0 a ( r ( r − 1 ) + b r + c ) x r = 0 equation:ax^2y''+bxy'+cy=0\\ y=x^r \quad y'=rx^{r-1} \quad y''=r(r-1)x^{r-2}\\ a x^2(r(r-1)) x^{r-2}+b x\left(r x^{r-1}\right)+c x^r=0 \\ a(r(r-1)+b r+c) x^r=0 equation:ax2y′′+bxy+cy=0y=xry=rxr1y′′=r(r1)xr2ax2(r(r1))xr2+bx(rxr1)+cxr=0a(r(r1)+br+c)xr=0
⇒ ar ⁡ ( r − 1 ) + b r + c = 0 \Rightarrow\operatorname{ar}(r-1)+b r+c=0 ar(r1)+br+c=0

  1. two distinct roots
    y 1 = x r 1 y 2 = x r 2 y_1=x^{r_1} \quad y_2=x^{r_2} y1=xr1y2=xr2
  2. repeated roots
    y 1 = x r 1 y 2 = x r 1 l n x y_1=x^{r_1} \quad y_2=x^{r_1}lnx y1=xr1y2=xr1lnx
  3. two complex roots
    x λ + μ i = e ( λ + μ i ) ln ⁡ x = e λ ln ⁡ x ⋅ e μ i ln ⁡ x = x λ ⋅ e μ i ln ⁡ x = x λ ( cos ⁡ ( μ ln ⁡ x ) + i sin ⁡ ( μ ln ⁡ x ) ) \begin{aligned} x^{\lambda+\mu i}&=e^{(\lambda+\mu i) \ln x} \\ &=e^{\lambda \ln x} \cdot e^{\mu i \ln x} \\ & =x^\lambda \cdot e^{\mu i \ln x} \\ & =x^\lambda(\cos (\mu \ln x)+i \sin (\mu \ln x)) \end{aligned} xλ+μi=e(λ+μi)lnx=eλlnxeμilnx=xλeμilnx=xλ(cos(μlnx)+isin(μlnx))

Integrating Factor(first order + inhomogeneous)

e q u a t i o n : y ′ + Q ( x ) y = f ( x ) ( 首项系数为 1 ) equation: y'+Q(x)y = f(x)\textcolor{red}{(首项系数为1)} equation:y+Q(x)y=f(x)(首项系数为1)
μ = e ∫ Q ( x ) d x ( μ y ) ′ = f ( x ) μ μ y = ∫ f ( x ) μ d x ( 不定积分有常数项!!! ) y = μ − 1 ∫ f ( x ) μ d x \mu = e^{\int Q(x)dx}\\ (\mu y)'= f(x)\mu \\ \mu y = \int f(x) \mu dx \textcolor{red}{(不定积分有常数项!!!)} \\ y=\mu ^{-1} \int f(x) \mu dx μ=eQ(x)dx(μy)=f(x)μμy=f(x)μdx(不定积分有常数项!!!)y=μ1f(x)μdx

Green function (inhomogeneous)

e q u a t i o n : y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) ( 首项系数为 1 ) equation: y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)\textcolor{red}{(首项系数为1)} equation:y′′+P(x)y+Q(x)y=f(x)(首项系数为1)
The method is called Green function
y p ( x ) = ∫ x 0 x G ( x , t ) f ( t ) d t G ( x , t ) = y 1 ( t ) y 2 ( x ) − y 1 ( x ) y 2 ( t ) w ( t ) \begin{aligned} y_p(x) & =\int_{x_0}^x G(x, t) f(t) d t \\ G(x, t) & =\frac{y_1(t) y_2(x)-y_1(x) y_2(t)}{w(t)} \end{aligned} yp(x)G(x,t)=x0xG(x,t)f(t)dt=w(t)y1(t)y2(x)y1(x)y2(t)
y 1 , y 2 y_1, y_2 y1,y2 are the solution of homogeneous ODE
y ′ ′ + P ( x ) ′ + Q ( x ) y = 0 w ( y 1 ( t ) , y 2 ( t ) ) = ∣ y 1 ( t ) y 2 ( t ) y 1 ′ ( t ) y 2 ′ ( t ) ∣ ≠ 0 \begin{gathered} y^{\prime \prime}+P(x)^{\prime}+Q(x) y=0 \\ w\left(y_1(t), y_2(t)\right)=\left|\begin{array}{ll} y_1(t) & y_2(t) \\ y_1^{\prime}(t) & y_2^{\prime}(t) \end{array}\right| \neq 0 \end{gathered} y′′+P(x)+Q(x)y=0w(y1(t),y2(t))= y1(t)y1(t)y2(t)y2(t) =0
y = y ∗ + y p ( y ∗   i s   g e n e r a l   s o l u t i o n ) y = y^* + y_p (y^* \ is\ general\ solution) y=y+yp(y is general solution)

Green function with IVP(initial value problem)

y ( x 0 ) = y 0 y ′ ( x 0 ) = y 1 y\left(x_0\right)=y_0 \quad y'\left(x_0\right)=y_1 y(x0)=y0y(x0)=y1
( ? 常数是在通解里直接算还是按照最后的 y 算的 , 我不管,按最后 y 算。 V a h i d 你害人不浅 ) \textcolor{blue}{(?常数是在通解里直接算还是按照最后的y算的,我不管,按最后y算。Vahid你害人不浅)} (?常数是在通解里直接算还是按照最后的y算的,我不管,按最后y算。Vahid你害人不浅)
( 常数是在通解里直接算的 ) \textcolor{red}{(常数是在通解里直接算的)} (常数是在通解里直接算的)

Laplace Transform

For f : [ 0 , ∞ ) → R f:[0, \infty) \rightarrow \mathbb{R} f:[0,)R.
L ( f ( t ) ) = L ⟨ f ( t ) } = ∫ 0 ∞ e − s t f ( t ) d t \mathscr{L}(f(t))=\mathscr{L}\langle f(t)\}=\int_0^{\infty} e^{-s t} f(t) d t L(f(t))=Lf(t)}=0estf(t)dt
L { f ′ ( t ) } = ∫ 0 ∞ e − s t f ′ ( t ) d t = s F ( s ) − f ( 0 ) L { f ′ ′ ( t ) } = ∫ 0 ∞ e − s t f ′ ′ ( t ) d t = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) \mathscr{L}\left\{f^{\prime}(t)\right\}=\int_0^{\infty} e^{-s t} f^{\prime}(t) d t=s F(s)-f(0) \\ \mathscr{L}\left\{f^{\prime \prime}(t)\right\}=\int_0^{\infty} e^{-s t} f^{\prime \prime}(t) d t=s^2 F(s)-s f(0)-f^{\prime}(0) L{f(t)}=0estf(t)dt=sF(s)f(0)L{f′′(t)}=0estf′′(t)dt=s2F(s)sf(0)f(0)

Proof: integral by part
L ( f ( t ) ) = ∫ 0 ∞ e − s t f ′ ( t ) d t = ∫ 0 ∞ e − s t d f ( t ) = e − s t f ( t ) ∣ 0 ∞ 0 − ∫ 0 ∞ f ( t ) d e − s t = e − s t f ( t ) ∣ 0 ∞ + s ∫ 0 ∞ e − s t f ( t ) d t = e − s ∞ ⏟ 0 f ( ∞ ) − e − s ( 0 ) f ( 0 ) + ∫ 0 ∞ e − s t f ( t ) d t ⏟ L { f ( t ) } = − f ( 0 ) + s L { ( f ( t ) } = s F ( s ) − f ( 0 ) \begin{aligned} \mathscr{L}(f(t))&=\int_0^{\infty} e^{-s t} f^{\prime}(t) d t \\ &= \int_0^{\infty} e^{-s t}d f(t)\\ &= \left. e^{-s t} f(t)\right|_0 ^{\infty}0-\int_0^{\infty} f(t) d e^{-s t} \\ &= \left. e^{-s t} f(t)\right|_0 ^{\infty}+s \int_0^{\infty} e^{-s t} f(t) d t \\ & =\underbrace{ e^{-s \infty}}_0 f(\infty)-e^{-s(0)} f(0)+\underbrace{\int_0^{\infty}e^{-st} f(t) d t}_{\mathscr{L}\{f(t)\}} \\ & =-f(0)+s \mathscr{L}\{(f(t)\}\\ &=s F(s)-f(0) \end{aligned} L(f(t))=0estf(t)dt=0estdf(t)=estf(t) 000f(t)dest=estf(t) 0+s0estf(t)dt=0 esf()es(0)f(0)+L{f(t)} 0estf(t)dt=f(0)+sL{(f(t)}=sF(s)f(0)

L { f ′ ′ ( t ) } = ∫ 0 ∞ e − s t f ′ ′ ( t ) d t = e − s t f ′ ( t ) ∣ 0 ∞ + s ∫ 0 ∞ f ′ ( t ) e − s t d t = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) . \begin{aligned} \mathscr{L}\left\{f^{\prime \prime}(t)\right\}&=\int_0^{\infty} e^{-s t} f^{\prime \prime}(t) d t \\ &=\left.e^{-s t} f^{\prime}(t)\right|_0 ^{\infty}+s \int_0^{\infty} f^{\prime}(t) e^{-s t} d t\\ &=s^2 F(s)-s f(0)-f^{\prime}(0) . \end{aligned} L{f′′(t)}=0estf′′(t)dt=estf(t) 0+s0f(t)estdt=s2F(s)sf(0)f(0).

example
  1. Find the given inverse
    a. L − 1 { 4 s 4 s 2 + 1 } \mathcal{L}^{-1}\left\{\frac{4 s}{4 s^2+1}\right\} L1{4s2+14s}
    b. L − 1 { 1 s 2 + 3 s } \mathcal{L}^{-1}\left\{\frac{1}{s^2+3 s}\right\} L1{s2+3s1}
    c. L − 1 { s s 2 + 2 s − 3 } \mathcal{L}^{-1}\left\{\frac{s}{s^2+2 s-3}\right\} L1{s2+2s3s}
    d. L − 1 { s ( s − 2 ) ( s − 3 ) ( s − 6 ) } \mathcal{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\} L1{(s2)(s3)(s6)s}
    Solution.
    a. L − 1 { 1 4 s 2 + 1 } = L − 1 { 1 2 ⋅ 1 / 2 s 2 + 1 / 4 } = 1 2 sin ⁡ 1 2 t \mathcal{L}^{-1}\left\{\frac{1}{4 s^2+1}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1 / 2}{s^2+1 / 4}\right\} =\frac{1}{2} \sin \frac{1}{2} t L1{4s2+11}=L1{21s2+1/41/2}=21sin21t
    b. L − 1 { 1 s 2 + 3 s } = L − 1 { 1 s ( s + 3 ) } = L − 1 { A s + B ( s + 3 ) } = L − 1 { 1 3 ⋅ 1 s − 1 3 ⋅ 1 s + 3 } = 1 3 − 1 3 e − 3 t \mathcal{L}^{-1}\left\{\frac{1}{s^2+3 s}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{s(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{A}{s}+\frac{B}{(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s}-\frac{1}{3} \cdot \frac{1}{s+3}\right\} =\frac{1}{3}-\frac{1}{3} e^{-3 t} L1{s2+3s1}=L1{s(s+3)1}=L1{sA+(s+3)B}=L1{31s131s+31}=3131e3t
    c. L − 1 { s s 2 + 2 s − 3 } = L − 1 { s ( s − 1 ) ( s + 3 ) } = L − 1 { 1 4 ⋅ 1 s − 1 + 3 4 ⋅ 1 s + 3 } = 1 4 e t + 3 4 e − 3 t \mathcal{L}^{-1}\left\{\frac{s}{s^2+2 s-3}\right\} =\mathcal{L}^{-1}\left\{\frac{s}{(s-1)(s+3)}\right\} =\mathcal{L}^{-1}\left\{\frac{1}{4} \cdot \frac{1}{s-1}+\frac{3}{4} \cdot \frac{1}{s+3}\right\} =\frac{1}{4} e^t+\frac{3}{4} e^{-3 t} L1{s2+2s3s}=L1{(s1)(s+3)s}=L1{41s11+43s+31}=41et+43e3t
    d. L − 1 { s ( s − 2 ) ( s − 3 ) ( s − 6 ) } = L − 1 { 1 2 ⋅ 1 s − 2 − 1 s − 3 + 1 2 ⋅ 1 s − 6 } = 1 2 e 2 t − e 3 t + 1 2 e 6 t \mathcal{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s-2}-\frac{1}{s-3}+\frac{1}{2} \cdot \frac{1}{s-6}\right\}=\frac{1}{2} e^{2 t}-e^{3 t}+\frac{1}{2}e^{6t} L1{(s2)(s3)(s6)s}=L1{21s21s31+21s61}=21e2te3t+21e6t
  1. Use the Laplace transform to solve the given initial-value problem.
    y ′ ′ − 2 y ′ + 5 y = 1 + t , y ( 0 ) = 0 , y ′ ( 0 ) = 4 y^{\prime \prime}-2 y^{\prime}+5 y=1+t, \quad y(0)=0, y^{\prime}(0)=4 y′′2y+5y=1+t,y(0)=0,y(0)=4
    Solution. The Laplace transform of the differential cquation is
    Solving for L { y } \mathcal{L}\{y\} L{y} we obtain
    L { y } = 4 s 2 + s + 1 s 2 ( s 2 − 2 s + 5 ) = 7 25 1 s + 1 5 1 s 2 + − 7 s / 25 − 109 / 25 s 2 − 2 s + 5 = 7 25 1 s + 1 5 1 s 2 − 7 25 s − 1 ( s − 1 ) 2 + 2 2 + 51 25 2 ( s − 1 ) 2 + 2 2 \begin{aligned} \mathcal{L}\{y\} & =\frac{4 s^2+s+1}{s^2\left(s^2-2 s+5\right)}=\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^2}+\frac{-7 s / 25-109 / 25}{s^2-2 s+5} \\ & =\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^2}-\frac{7}{25} \frac{s-1}{(s-1)^2+2^2}+\frac{51}{25} \frac{2}{(s-1)^2+2^2} \end{aligned} L{y}=s2(s22s+5)4s2+s+1=257s1+51s21+s22s+57s/25109/25=257s1+51s21257(s1)2+22s1+2551(s1)2+222

P32 7

  1. Use the Laplace transforms to solve
    y ′ ′ ( x ) − 2 y ′ ( x ) − 3 y ( x ) = x e x  subject to  { y ( 0 ) = 0 y ′ ( 0 ) = 0 y^{\prime \prime}(x)-2 y^{\prime}(x)-3 y(x)=x e^x \quad \text { subject to }\left\{\begin{array}{l} y(0)=0 \\ y^{\prime}(0)=0 \end{array}\right. y′′(x)2y(x)3y(x)=xex subject to {y(0)=0y(0)=0
    Solution. Applying Laplace transforms to the ODE gives
    L [ y ′ ′ ( x ) − 2 y ′ ( x ) − 3 y ( x ) ] ( s ) = L [ x e x ] ( s ) \mathscr{L}\left[y^{\prime \prime}(x)-2 y^{\prime}(x)-3 y(x)\right](s)=\mathscr{L}\left[x e^x\right](s) L[y′′(x)2y(x)3y(x)](s)=L[xex](s)
    Then, we have
    s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) − 2 ( s Y ( s ) − y ( 0 ) ) − 3 Y ( s ) = 1 ( s − 1 ) 2 s^2 Y(s)-s y(0)-y^{\prime}(0)-2(s Y(s)-y(0))-3 Y(s)=\frac{1}{(s-1)^2} s2Y(s)sy(0)y(0)2(sY(s)y(0))3Y(s)=(s1)21
    By using the initial conditions:
    ( s 2 − 2 s − 3 ) Y ( s ) = 1 ( s − 1 ) 2 \left(s^2-2 s-3\right) Y(s)=\frac{1}{(s-1)^2} (s22s3)Y(s)=(s1)21
    Finally
    Y ( s ) = 1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) Y(s)=\frac{1}{(s-1)^2(s+1)(s-3)} Y(s)=(s1)2(s+1)(s3)1
    where Y ( s ) = L [ y ( x ) ] ( s ) Y(s)=\mathscr{L}[y(x)](s) Y(s)=L[y(x)](s). Let
    1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) = A s + B ( s − 1 ) 2 + C s + 1 + D s − 3 ( ∗ ) \frac{1}{(s-1)^2(s+1)(s-3)}=\frac{A s+B}{(s-1)^2}+\frac{C}{s+1}+\frac{D}{s-3}\qquad (*) (s1)2(s+1)(s3)1=(s1)2As+B+s+1C+s3D()
  • Multiplying ( ∗ ) (*) () by s − 3 s-3 s3 then letting s = 3 s=3 s=3 we have D = 1 16 D=\frac{1}{16} D=161.
  • Multiplying ( ∗ ) (*) () by s + 1 s+1 s+1 then letting s = − 1 s=-1 s=1 we have C = − 1 16 C=\frac{-1}{16} C=161.
  • Having D = 1 16 D=\frac{1}{16} D=161 and C = − 1 16 C=\frac{-1}{16} C=161 and let s = 0 s=0 s=0 in ( ∗ ) (*) () we have B = − 1 4 B=\frac{-1}{4} B=41.
  • Multiplying ( ∗ ) (*) () by ( s − 1 ) 2 (s-1)^2 (s1)2 then let s = 1 s=1 s=1 we have A + B = − 1 4 A+B=\frac{-1}{4} A+B=41 then A = 0 A=0 A=0.
    Hence
    y ( x ) = L − 1 [ Y ( s ) ] ( x ) = L − 1 [ 1 ( s − 1 ) 2 ( s + 1 ) ( s − 3 ) ] ( x ) = L − 1 [ − 1 / 4 ( s − 1 ) 2 + − 1 / 16 s + 1 + 1 / 16 s − 3 ] ( x ) = − 1 4 x e x − 1 16 e − x + 1 16 e 3 x \begin{aligned} y(x) & =\mathscr{L}^{-1}[Y(s)](x)=\mathscr{L}^{-1}\left[\frac{1}{(s-1)^2(s+1)(s-3)}\right](x) \\ & =\mathscr{L}^{-1}\left[\frac{-1 / 4}{(s-1)^2}+\frac{-1 / 16}{s+1}+\frac{1 / 16}{s-3}\right](x) \\ & =\frac{-1}{4} x e^x-\frac{1}{16} e^{-x}+\frac{1}{16} e^{3 x} \end{aligned} y(x)=L1[Y(s)](x)=L1[(s1)2(s+1)(s3)1](x)=L1[(s1)21/4+s+11/16+s31/16](x)=41xex161ex+161e3x

Power series for Solving ODEs

#Definition
(Power series) The power series in ( x − a ) (x-a) (xa) is an infinite series of the form
∑ n = 0 ∞ c n ( x − a ) n = c 0 + c 1 ( x − a ) + c 2 ( x − a ) 2 + ⋯ \sum_{n=0}^{\infty} c_n(x-a)^n=c_0+c_1(x-a)+c_2(x-a)^2+\cdots n=0cn(xa)n=c0+c1(xa)+c2(xa)2+

Convergence

Interval of Convergence:

It is the set of all real numbers x x x for which the series is convergent.

Radius of convergence:

If R > 0 R>0 R>0 (radius of convergent)
∣ x − a ∣ < R |x-a|<R xa<R:the a power series is convergent
∣ x − a ∣ > R |x-a|>R xa>R:divergent

Ratio Test

L = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right| L=nlim anan+1

0 < L < 1 0<L<1 0<L<1: then the power series is convergent
L > 1 L>1 L>1: the power series is divergent.
L = 1 L=1 L=1: the test is without any result.

Power series define a function

Taylor series
∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ′ ′ ( a ) 1 ! ( x − a ) 2 + ⋯ \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^n=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{1 !}(x-a)^2+\cdots n=0n!f(n)(a)(xa)n=f(a)+1!f(a)(xa)+1!f′′(a)(xa)2+
Maclaurin series(在 x = 0 x=0 x=0处展开)
∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) 1 ! x + f ′ ′ ( 0 ) 1 ! x 2 + ⋯ \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n !} x^n=f(0)+\frac{f^{\prime}(0)}{1 !} x+\frac{f^{\prime \prime}(0)}{1 !} x^2+\cdots n=0n!f(n)(0)xn=f(0)+1!f(0)x+1!f′′(0)x2+
 Maclaurin Series   Interval   of Convergence  e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + ⋯ = ∑ n = 0 ∞ 1 n ! x n ( − ∞ , ∞ ) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n ( − ∞ , ∞ ) sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 ( − ∞ , ∞ ) tan ⁡ − 1 x = x − x 3 3 + x 5 5 − x 7 7 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 ( − 1 , 1 ] cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ 1 ( 2 n ) ! x 2 n ( − ∞ , ∞ ) sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ 1 ( 2 n + 1 ) ! x 2 n + 1 ( − 1 , 1 ] ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ = ∑ n = 1 ∞ ( − 1 ) n + 1 n x n ( − 1 , 1 ) 1 1 − x = 1 + x + x 2 + x 3 + ⋯ = ∑ n = 0 ∞ x n \begin{array}{c|c} \text { Maclaurin Series } & \begin{array}{c} \text { Interval } \\ \text { of Convergence } \end{array} \\ \hline e^x=1+\frac{x}{1 !}+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n !} x^n & (-\infty, \infty) \\[4mm] \cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n) !} x^{2 n} & (-\infty, \infty) \\[4mm] \sin x=x-\frac{x^3}{3 !}+\frac{x^5}{5 !}-\frac{x^7}{7 !}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n+1) !} x^{2 n+1} & (-\infty, \infty) \\[4mm] \tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^n}{2 n+1} x^{2 n+1} & (-1,1] \\[4mm] \cosh x=1+\frac{x^2}{2 !}+\frac{x^4}{4 !}+\frac{x^6}{6 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n) !} x^{2 n} & (-\infty, \infty) \\[4mm] \sinh x=x+\frac{x^3}{3 !}+\frac{x^5}{5 !}+\frac{x^7}{7 !}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1) !} x^{2 n+1} & (-1,1] \\[4mm] \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n & (-1,1) \\[4mm] \frac{1}{1-x}=1+x+x^2+x^3+\cdots=\sum_{n=0}^{\infty} x^n & \end{array}  Maclaurin Series ex=1+1!x+2!x2+3!x3+=n=0n!1xncosx=12!x2+4!x46!x6+=n=0(2n)!(1)nx2nsinx=x3!x3+5!x57!x7+=n=0(2n+1)!(1)nx2n+1tan1x=x3x3+5x57x7+=n=02n+1(1)nx2n+1coshx=1+2!x2+4!x4+6!x6+=n=0(2n)!1x2nsinhx=x+3!x3+5!x5+7!x7+=n=0(2n+1)!1x2n+1ln(1+x)=x2x2+3x34x4+=n=1n(1)n+1xn1x1=1+x+x2+x3+=n=0xn Interval  of Convergence (,)(,)(,)(1,1](,)(1,1](1,1)

Solve ODE

Regular singular point

P ( x ) y ′ ′ + Q ( x ) y ′ + R ( x ) y = 0 y ′ ′ + Q ( x ) P ( x ) y ′ + R ( x ) P ( x ) y = 0 \begin{aligned} & P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \\ & y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y=0 \end{aligned} P(x)y′′+Q(x)y+R(x)y=0y′′+P(x)Q(x)y+P(x)R(x)y=0

If x 0 x_0 x0 is our singular point. P ( x 0 ) = 0 P\left(x_0\right)=0 P(x0)=0. Then
lim ⁡ x → x 0 ( x − x 0 ) Q ( x ) p ( x ) lim ⁡ x → x 0 ( x − x 0 ) 2 R ( x ) P ( x ) i s   f i n i t e \lim _{x \rightarrow x_0}\left(x-x_0\right) \frac{Q(x)}{p(x)}\\[4mm] \lim _{x \rightarrow x_0}\left(x-x_0\right)^2 \frac{R(x)}{P(x)}\\ is\ finite xx0lim(xx0)p(x)Q(x)xx0lim(xx0)2P(x)R(x)is finite

Frobenius’ Throrem

y = ∑ 0 ∞ a n ( x − x 0 ) n . . . ( 1 ) ( r e g u l a r   s i n g u l a r   p o i n t ) y = ∑ 0 ∞ a n ( x − x 0 ) n + r . . . ( 2 ) y = \sum_0^\infty a_n(x-x_0)^n...(1)\\ (regular\ singular\ point)y = \sum_0^\infty a_n(x-x_0)^{n+r}...(2) y=0an(xx0)n...(1)(regular singular point)y=0an(xx0)n+r...(2)

P
regular point
1
singular point
regular singular point
2
irregular singular point

Fourier Series

Arbitrary Period(T=2L)

f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n π L x + b n sin ⁡ n π L x ) f(x)=a_0+\sum_{n=1}^{\infty}\left(a_n \cos \frac{n \pi}{L} x+b_n \sin \frac{n \pi}{L} x\right) f(x)=a0+n=1(ancosLx+bnsinLx)
a 0 = 1 2 L ∫ − L L f ( x ) d x a n = 1 L ∫ − L L f ( x ) cos ⁡ n π x L d x n = 1 , 2 , ⋯ b n = 1 L ∫ − L L f ( x ) sin ⁡ n π x L d x n = 1 , 2 , ⋯ \begin{aligned} a_0&=\frac{1}{2 L} \int_{-L}^L f(x) d x \\ a_n&=\frac{1}{L} \int_{-L}^L f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2, \cdots\\ b_n&=\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n \pi x}{L} d x \quad n=1,2, \cdots \end{aligned} a0anbn=2L1LLf(x)dx=L1LLf(x)cosLxdxn=1,2,=L1LLf(x)sinLxdxn=1,2,

even

a 0 = 1 2 L ∫ − L L f ( x ) d x a n = 1 L ∫ − L L f ( x ) cos ⁡ n π x L d x n = 1 , 2 , ⋯ b n = 0 \begin{aligned} a_0&=\frac{1}{2 L} \int_{-L}^L f(x) d x \\ a_n&=\frac{1}{L} \int_{-L}^L f(x) \cos \frac{n \pi x}{L} d x \quad n=1,2, \cdots\\ b_n&=0 \end{aligned} a0anbn=2L1LLf(x)dx=L1LLf(x)cosLxdxn=1,2,=0

odd

a 0 = 0 a n = 0 b n = 1 L ∫ − L L f ( x ) sin ⁡ n π x L d x n = 1 , 2 , ⋯ \begin{aligned} a_0&=0 \\ a_n&=0 \\ b_n&=\frac{1}{L} \int_{-L}^L f(x) \sin \frac{n \pi x}{L} d x \quad n=1,2, \cdots \end{aligned} a0anbn=0=0=L1LLf(x)sinLxdxn=1,2,

half-range expansion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值