基于RBF神经网络的时序预测模型:基于历史车速信息预测未来几秒车速的车速预测程序

基于RBF神经网络模型,根据历史车速信息,预测将来几秒预测时域的车速信息的时序预测模型(本程序先根据训练工况训练,采用训练后的神经网络模型,预测UDDS循环工况,每个时间点车速下将来几秒内 的车速信息)。
1.文件包括,训练工况(.mat数据,工况可自己选取最好与想要预测的工况类似,如预测工况是城郊工况,训练工况最好也选择同类的)以及测试工况(.mat数据, 自己选取想要预测的工况),以及REF预测主程序(.m程序);
2.车速预测程序基于matlab m编程完成,已备注好如何修改预测步长,可根据需求自己调整 ;
3.程序主要适用于MPC(模型预测控制)或其基于MPC的能量管理策略的车速预测部分,或其他时序预测类也可参考(坡度预测、流量预测等)。

YID:7960676584458921

风中追风



基于RBF神经网络模型的时序车速预测模型

引言:
车速预测在车辆控制系统中具有重要的意义。通过预测车辆未来几秒内的车速信息,可以为模型预测控制(MPC)或其他能量管理策略提供准确的输入参数。本文基于RBF神经网络模型,通过历史车速信息建立时序预测模型,为车辆控制系统提供准确的车速预测。

一、模型原理
RBF神经网络模型是一种基于径向基函数的人工神经网络模型。该模型通过学习训练数据的特征,建立起输入与输出之间的映射关系。在车速预测中,我们将历史车速信息作为输入,将未来几秒内的车速信息作为输出,通过训练RBF神经网络模型,实现时序预测功能。

二、数据准备
为了建立准确的时序车速预测模型,我们需要准备两个文件:训练工况和测试工况。训练工况是用于训练神经网络模型的数据,可以根据预测的目标工况选择相似的工况进行训练。测试工况则是要预测的工况,用于验证模型的预测能力。

三、程序设计
车速预测程序基于Matlab编写,采用M编程语言实现。程序已经在代码中注释了如何修改预测步长,以满足具体需求。用户可以根据实际情况自行调整预测步长,以获得最佳的预测效果。

四、应用场景
本程序主要适用于MPC或其基于MPC的能量管理策略的车速预测部分。MPC是一种基于模型的控制方法,通过预测未来一段时间内的车速信息,优化车辆能量管理策略,以提高能源利用效率。除了车速预测,本程序还可以应用于其他时序预测类问题,如坡度预测、流量预测等。

结论:
本文基于RBF神经网络模型,提出了一种基于历史车速信息的时序车速预测模型。通过训练模型并根据输入的测试工况,可以准确地预测未来几秒内的车速信息。该模型适用于MPC或其他基于时序预测的能量管理策略,为车辆控制系统提供了重要的输入参数。未来,我们将进一步改进该模型,提高预测精度和稳定性,以满足实际应用需求。

以上是对基于RBF神经网络模型的时序车速预测模型的简要介绍。本文从模型原理、数据准备、程序设计和应用场景等方面进行了详细阐述,希望能为读者提供一种有效的车速预测方法。同时,我们也意识到该模型还存在一些局限性和改进空间,未来的研究工作将着重解决这些问题,提高模型的预测能力和稳定性。

以上相关代码,程序地址:http://wekup.cn/676584458921.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值