Σ-Δ模数转换器(ADC)揭秘(1)

1. 摘要

本文深入介绍Σ-Δ模/数转换器(ADC)的工作原理,重点关注难以理解的数字概念:过采样、噪声整形和抽样滤波等。同时包括Σ-Δ转换器的多种应用。

最新的Σ-Δ转换器通常具有较高分辨率、高度集成、低功耗以及较低成本,使其成为过程控制、高精度温度测量以及电子称等应用的上佳ADC选择。但由于设计者往往不太了解Σ-Δ类型的转换器,而选择传统的SAR ADC。

Σ-Δ转换器(1位ADC)的模拟侧非常简单;数字侧执行滤波和抽样,比较复杂,这部分使得Σ-Δ ADC的生产成本较低。为理解转换器工作原理,您必须熟悉过采样、噪声整形、数字滤波以及抽样等概念。

2. 过采样

首先,考虑输入信号为正弦波时传统多位ADC的频域传递函数。以频率Fs对该输入进行采样。根据奈奎斯特定理,Fs必须至少为输入信号带宽的两倍。

观察数字输出的FFT分析结果,我们可看到一个单音和大量随机噪声,从直流延伸至Fs/2 (图1)。这些噪声称为量化噪声,对该结果可以按照以下考虑:ADC输入为连续信号,具有无限可能的状态,但数字输出为离散函数,其不同状态的数量取决于转换器的分辨率。所以,从模拟到数字的转换损失了某些信息,在信号中引入了一定程度的失真。该误差的幅值是随机的,最大为±LSB。

图1. 多位ADC的FFT谱图,采样频率为FS

如果我们将基频幅值除以所有噪声频率的RMS和,则得到信噪比(SNR)。对于N位的ADC,SNR = 6.02N + 1.76dB。为提高传统ADC的SNR(并进而提高信号复现的精度),就必须提高位数。

仍以上例为例,但将采样频率提高,采用过采样因子k,达到kFs(图2)。FFT分析结果表明噪底降低。SNR与之前相同,但噪声能量已经分散至较宽的频率范围。Σ-Δ转换器利用这一原理,在1位ADC之后增加了数字滤波器(图3)。由于大多数噪声被数字滤波器滤除,所以RMS噪声较低。这种方法使得Σ-Δ转换器以较低分辨率的ADC实现较宽动态范围。

图2. 多位ADC的FFT谱图,采样频率为kFS

图3. 数字滤波对噪声带宽的作用

SNR改善仅仅受益于过采样和滤波吗?注意,1位ADC的SNR为7.78dB (6.02 + 1.76)。过采样因子每提高4,SNR增大6dB,每提高6dB则相当于增加1位。如果1位ADC的过采样为24倍,则达到4位的分辨率;那么为了实现16位的分辨率就必须采用过采样因子415,这很不现实。但是,Σ-Δ转换器利用噪声整形技术克服了这一限制,实现每4倍过采样得到的增益超过6dB。

3. 噪声整形

为理解噪声整形,我们首先看看一阶Σ-Δ调制器的方框图(图4),其中包括差分放大器、积分器和比较器,以及包含1位DAC的反馈环路。(该DAC为简单开关,将差分放大器的负输入连接至正或负基准电压)。反馈DAC的目的是将积分器的平均输出维持在接近比较器的基准电平。

图4. Σ-Δ调制器方框图

调制器输出端“1”的密度与输入信号成比例。输入增大时,比较器产生大量“1”;输入减小时则相反。通过对误差电压求和,积分器对于输入信号为低通滤波器,对于量化噪声为高通滤波器。所以,大多数量化噪声被搬移至较高频率(图5)。过采样不仅改变总噪声功率,而且改变了其分布。

图5. Σ-Δ调制器中积分器的作用

如果我们在噪声整形Σ-Δ调制器上增加一个数字滤波器,则能够滤除比简单过采样更多的噪声(图6)。采样率每增加一倍,这种调制器(1阶)提供9dB的SNR改善。对于更高阶的量化,我们可在Σ-Δ调制器中包含多级积分和求和。例如,图7所示的2阶Σ-Δ调制器,采样率每增加一倍,提供15dB的SNR改善。图8所示为Σ-Δ调制器阶数与达到特定SNR所需的过采样之间的关系。

图6. 数字滤波器对整形噪声的作用

图7. 利用多级积分和求和实现较高阶的量化噪声

图8. Σ-Δ调制器阶数与达到特定SNR所需的过采样之间的关系

4. 数字和抽样滤波器

Σ-Δ调制器的输出为1位数据流,采样率可达到兆赫兹范围。数字和抽样滤波器(图9)的目的是从该数据流中析取信息,将数据率降低为更有用的值。在Σ-Δ ADC中,数字滤波器对1位数据流进行平均,提高ADC分辨率,并滤除带外量化噪声。它决定了信号带宽、建立时间和阻带抑制。

图9. Σ-Δ调制器的数字侧

Σ-Δ转换器中,广泛用于执行低通功能的滤波器结构为Sinc³型(图10)。该滤波器的主要优点是其陷波响应,(例如)设置为电网频率时可抑制该频率。陷波位置与输出数据率(1/数据字周期)直接相关。SINC³滤波器的建立时间为三个数据字周期。对于60Hz陷波(60Hz数据率),建立时间为3/60Hz = 50ms。对于要求较低分辨率和较快建立时间的应用,可考虑MAX1400家族ADC,可选择滤波器类型(SINC¹或SINC³)。

图10. Sinc³滤波器的低通函数

SINC¹滤波器的建立时间为一个数据字。在上例中,1/60Hz = 16.7ms。由于数字输出滤波器降低了带宽,即使输出数据率低于原始采样率,也满足奈奎斯特准则。为实现这一目的,可保留特定的输入采样,而丢弃其余采样。该过程被称为以因子M(抽样比)进行抽样。如果输出数据率高于信号带宽的两倍,M可为任意整数值(图11)。如果输入采样频率为fs,则可将滤波器输出数据率降低至fs/M,不会损失信息。

图11. 抽样不会造成任何信息损失


本文章是博主花费大量的时间精力进行梳理和总结而成,希望能帮助更多的小伙伴~  🙏🙏🙏

后续内容将持续更新,敬请期待(*^▽^*)

欢迎大家评论,点赞,收藏→→→

### Σ-Δ模数转换器ADC)工作原理 Σ-Δ模数转换器通过过采样、抽取滤波和量化噪声整形来实现高分辨率和优秀的抗混叠滤波性能[^2]。这种技术的核心在于将输入模拟信号以远高于奈奎斯特频率的速率进行采样,从而使得量化噪声被推移到高频区域。 #### 过采样与噪声整形 在传统的Nyquist型ADC中,为了防止频谱重叠导致的失真,通常需要严格的低通滤波器来限制带宽。而Σ-Δ ADC则采用更高的采样率,即所谓的过采样技术。这不仅简化了前端模拟滤波的要求,还允许后续处理阶段更容易去除不需要的高频成分。更重要的是,Σ-Δ架构中的反馈机制可以有效地改变量化误差的能量分布——使大部分能量集中在较高频率处,进而提高了有效位数(ENOB)。 #### 抽取滤波过程 由于过采样的存在,在输出端会得到一个非常高的比特流速度。因此,实际应用中还需要经过降采样操作,也就是抽取滤波的过程。这一过程中使用的通常是梳状响应特性良好的SINC滤波器或其他类型的FIR/IIR数字滤波器。它们能够平滑地削减那些因过量采样引入但又不在目标频段内的多余信息,最终获得较低的数据传输速率却具备更高精度的结果。 ```matlab % 示例MATLAB代码展示简单的CIC滤波器设计 Fs = 1e6; % 输入采样频率 OSR = 32; % 过采样比率 decimationFactor = OSR; cicFilter = dsp.CICDecimator(decimationFactor,'DifferentialDelay',1); fvtool(cicFilter); % 显示滤波器幅频响应图 ``` ### 应用实例 许多现代精密测量仪器都依赖于高性能的Σ-Δ ADC来获取准确可靠的读数。例如,国家仪器公司(NI)生产的SC Express系列产品就集成了此类器件,提供了高达24位的有效分辨力以及出色的线性和稳定性表现;而在工业自动化领域内,则常见到诸如MAXIM Integrated推出的MAX1402这样的专用芯片解决方案,它内部包含了复杂的模拟前端电路如多路选择开关、斩波稳定放大器等组件,并支持多种配置选项满足不同应用场景下的需求[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零零刷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值