Liouville 公式

雅可比矩阵

函数的一阶偏导以一定方式排列的矩阵
比如: { y 1 = x 1 y 2 = 5 x 3 y 3 = 4 x 2 2 − 2 x 3 y 4 = x 3 s i n x 1 \begin{cases}y_1=x_1\\ y_2=5x_3\\y_3=4x_2^2-2x_3\\y_4=x_3sinx_1\end{cases} y1=x1y2=5x3y3=4x222x3y4=x3sinx1
雅可比矩阵为:
[ 1 0 0 0 0 5 0 8 x 2 − 2 x 3 c o s x 1 0 s i n x 1 ] \begin{bmatrix}1&0& 0 \\0 &0&5\\0&8x_2&-2 \\x_3cosx_1&0& sinx_1\end{bmatrix} 100x3cosx1008x20052sinx1

发散度

雅可比矩阵的迹,即有 d i v [ ϕ ( x ) ] = Σ i = 1 k ∂ ϕ i ( x i ) / ∂ x i div[\phi(x)]=\Sigma_{i=1}^{k}\partial\phi_i(x_i)/\partial x_i div[ϕ(x)]=Σi=1kϕi(xi)/xi

Liouville公式

A ( t ) A(t) A(t)表示A在解映射 ξ \xi ξ下面的象,即 A ( t ) = { ξ ( t , x 0 ) : x 0 ∈ A } A(t)=\{\xi(t,x^0):x^0 \in A\} A(t)={ξ(t,x0):x0A}
则,A(t)的体积为: v o l [ A ( t ) ] = ∫ A ( t ) d x vol[A(t)]=\int_{A(t)}dx vol[A(t)]=A(t)dx
李维尔公式: d d t v o l [ A ( t ) ] = ∫ A ( t ) d i v [ ϕ ( x ) ] d x \dfrac {d}{dt}{vol[A(t)]}=\int_{A(t)}div[\phi(x)]dx dtdvol[A(t)]=A(t)div[ϕ(x)]dx,它说明,A(t)的体积的时间导数存在并且等于A(t)上发散度的积分。

本文参考《演化博弈论》乔根·W·布威尔 [著]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值