刘维尔定理暂记

代数函数与超越函数,域的代数扩张,
基本的初等函数:有理函数,代数函数,指数函数,对数函数,三角函数
s i n x = ( e i x − e − i x ) / 2 sinx=(e^{ix}-e^{-ix})/2 sinx=(eixeix)/2
a r c t a n = 1 2 i l n 1 + i x 1 − i x arctan=\frac{1}{2i}ln \frac{1+ix}{1-ix} arctan=2i1ln1ix1+ix
a r c s i n = − i l n ( x ( + / − ) x 2 − 1 ) arcsin=-iln(x(+/-) \sqrt {x^2-1 }) arcsin=iln(x(+/)x21 )

微分域K(对加减乘除,求导封闭)

初 等 函 数 a ∈ K , y ′ = a ∣ ∣ y ∈ K 初 等 函 数 的 扩 域 中 则 a = ∑ i = 1 n c i u i ′ u i + v ′ c i 是 常 数 u i ∈ K , v ∈ K y = ∑ i = 1 n c i l n ( u i ) + v 初等函数a\in K,y'=a||y\in K初等函数的扩域中\\ 则a=\sum_{i=1}^{ n}c_i \frac{u_i'}{u_i}+v'\\ c_i 是常数 u_i\in K,v\in K\\ y=\sum_{i=1}^{ n}c_i ln(u_i)+v aKy=ayKa=i=1nciuiui+vciuiK,vKy=i=1nciln(ui)+v

当n=0时:
取y=v
设当n-1时成立,则:

从三类函数的角度来证明定理:

刘维尔定理2: f , g 是 有 理 多 项 式 , f ( x ) ∗ e g ( x ) 存 在 初 等 原 函 数 i f f f = b ′ + b g ′ , b ∈ K = C ( z ) f,g是有理多项式,f(x)*e^{g(x)}存在初等原函数 \qquad iff \qquad f=b'+bg',b\in K =C(z) f,gf(x)eg(x)ifff=b+bg,bK=C(z)

初等函数(代数,指数,对数函数)的导数仍然是初等函数

2.所以要处理的只有自然的指数函数对数函数
2.1 多项式函数相除后求导仍然是有理函数
2.2 代数函数的求导: 域 张 对 应 的 代 数 函 数 ∑ 0 n a n ( x ) y n 的 求 导 仍 然 是 代 数 函 数 域张对应的代数函数\sum_{0}^{ n}a_n(x)y^n 的求导仍然是代数函数 0nan(x)yn
2.3 y= lnx的求导: y ′ = 1 x ∗ x ′ , x ∈ K → y ′ = x ′ x ∈ 起 始 域 K , ( x ∈ K ) y'=\frac{1}{x}*x' ,x\in K \rightarrow y'=\frac{x' }{x} \in 起始域K,(x\in K) y=x1x,xKy=xxKxK
2.4 y = e x , y ′ = y ∗ x ′ , 因 为 y = e x , 所 以 y 也 属 于 K , y ’ 也 属 于 K y=e^x ,y'=y*x' ,因为y=e^x,所以y也属于K,y’也属于K y=ex,y=yx,y=ex,yKyK

相关链接

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值