自识别标记(self-identifying marker) -(3) 用于相机标定的CALTag源码剖析(上)

本文详细分析了用于相机标定的CALTag的MATLAB源代码,从灰度图的二值化到连通区域的计算与过滤。首先介绍二值化过程,采用自适应阈值方法,并通过形态学处理去除噪声。接着讨论过滤连通区域的策略,包括基于面积和欧拉数的标准,以区分真实标记和背景噪声。过滤后的连通区域展示了欧拉数的应用。
摘要由CSDN通过智能技术生成

CALTag的源代码(MATLAB)可以从如下网址下载:
https://github.com/brada/caltag
下面以一幅被遮挡的图I为例进行代码的详细分析:

1、 灰度图的二值化,计算连通区域

输入的灰度图为I,显示如下
这里写图片描述
二值化方法是基于Peter Kovesi在http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/提供的adaptive thresholding方法。

T = adaptivethresh( I ); 

显示自适应二值化后的图像T:
这里写图片描述
用sobel算子检测边缘得到E,然后做了简单的形态学处理,去掉一些杂散的点,对应的代码如下

E = edge( 
CALTag是一种高精度的相机标定方法,其原理和应用领域已在参考文献中详细介绍。相机内参标定是指确定相机的内部参数,包括焦距、主点坐标和畸变系数等,以便在图像中进行准确的测量和重建。 如果您想在实际项目中应用CALTag进行自识别标记,您需要设计适合项目特点的图案。根据引用中的介绍,您可以根据项目的要求选择不同的尺寸、数目和排列方式来设计图案。在设计图案时,需要注意以下几点: 1. 尺寸:根据图案在场景中的大小和距离,选择适当的尺寸,以保证标记能够在图像中清晰可见。 2. 数目:根据需要检测和跟踪的目标数量,确定图案中标记的数目。更多的标记可以提供更好的定位精度和鲁棒性。 3. 排列:根据场景中的约束条件和标记的布置方式,确定标记的排列方式。可以考虑使用规则的网格布局或特定的形状布局。 CALTag提供了相关的代码和工具来辅助设计标记图案。引用中提供了关于CALTag的C代码实现和使用MATLAB进行图像处理的信息。您可以根据CALTag的要求和您的具体项目需求,使用MATLAB中的图像处理工具箱进行图案设计和标定操作。 综上所述,CALTag是一种用于相机内参标定的方法,您可以根据项目需求设计自己的标记图案,并利用CALTag提供的代码和工具进行标定操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [自识别标记(self-identifying marker) -(5) 用于相机标定CALTag图案设计](https://blog.csdn.net/electech6/article/details/52497679)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [matlabkmeansc代码-caltag:相机校准标签](https://download.csdn.net/download/weixin_38672812/18976773)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值