Conversion between quaternions and Euler angles


https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles


From Wikipedia, the free encyclopedia

Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the dynamics community commonly refers to quaternions in this application as "Euler parameters".

Definition[edit]

For the rest of this article, the JPL quaternion convention[1] shall be used. A unit quaternion can be described as:

q = [ q 0 q 1 q 2 q 3 ] T = [ q w q x q y q z ] T {\displaystyle \mathbf {q} ={\begin{bmatrix}q_{0}&q_{1}&q_{2}&q_{3}\end{bmatrix}}^{T}={\begin{bmatrix}q_{w}&q_{x}&q_{y}&q_{z}\end{bmatrix}}^{T}} {\displaystyle \mathbf {q} ={\begin{bmatrix}q_{0}&q_{1}&q_{2}&q_{3}\end{bmatrix}}^{T}={\begin{bmatrix}q_{w}&q_{x}&q_{y}&q_{z}\end{bmatrix}}^{T}}
| q | 2 = q 0 2 + q 1 2 + q 2 2 + q 3 2 = q w 2 + q x 2 + q y 2 + q z 2 = 1 {\displaystyle |\mathbf {q} |^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=q_{w}^{2}+q_{x}^{2}+q_{y}^{2}+q_{z}^{2}=1} {\displaystyle |\mathbf {q} |^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=q_{w}^{2}+q_{x}^{2}+q_{y}^{2}+q_{z}^{2}=1}

We can associate a quaternion with a rotation around an axis by the following expression

q 0 = q w = cos ⁡ ( α / 2 ) {\displaystyle \mathbf {q} _{0}=\mathbf {q} _{w}=\cos(\alpha /2)} {\displaystyle \mathbf {q} _{0}=\mathbf {q} _{w}=\cos(\alpha /2)}
q 1 = q x = sin ⁡ ( α / 2 ) cos ⁡ ( β x ) {\displaystyle \mathbf {q} _{1}=\mathbf {q} _{x}=\sin(\alpha /2)\cos(\beta _{x})} {\displaystyle \mathbf {q} _{1}=\mathbf {q} _{x}=\sin(\alpha /2)\cos(\beta _{x})}
q 2 = q y = sin ⁡ ( α / 2 ) cos ⁡ ( β y ) {\displaystyle \mathbf {q} _{2}=\mathbf {q} _{y}=\sin(\alpha /2)\cos(\beta _{y})} {\displaystyle \mathbf {q} _{2}=\mathbf {q} _{y}=\sin(\alpha /2)\cos(\beta _{y})}
q 3 = q z = sin ⁡ ( α / 2 ) cos ⁡ ( β z ) {\displaystyle \mathbf {q} _{3}=\mathbf {q} _{z}=\sin(\alpha /2)\cos(\beta _{z})} {\displaystyle \mathbf {q} _{3}=\mathbf {q} _{z}=\sin(\alpha /2)\cos(\beta _{z})}

where α is a simple rotation angle (the value in radians of the angle of rotation) and cos(βx), cos(βy) and cos(βz) are the "direction cosines" locating the axis of rotation (Euler's Theorem).

Tait–Bryan angles[edit]

Tait–Bryan angles. z-y′-x″ sequence (intrinsic rotations; N coincides with y’). The angle rotation sequence is ψ, θ, Ф. Note that in this case ψ > 90° and θ is a negative angle.

Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics):

  • Bank – ϕ {\displaystyle \phi } \phi : rotation about the new X-axis
  • Attitude – θ {\displaystyle \theta } \theta : rotation about the new Y-axis
  • Heading – ψ {\displaystyle \psi } \psi : rotation about the Z-axis

where the X-axis points forward, Y-axis to the right and Z-axis downward with angles defined for clockwise/lefthand rotation. In the conversion example above the rotation occurs in the order heading, attitude, bank (about intrinsic axes).

Rotation matrices[edit]

The orthogonal matrix (post-multiplying a column vector) corresponding to a clockwise/left-handed (looking along positive axis to origin) rotation by the unit quaternion q = q 0 + i q 1 + j q 2 + k q 3 {\displaystyle q=q_{0}+iq_{1}+jq_{2}+kq_{3}} q=q_{0}+iq_{1}+jq_{2}+kq_{3} is given by the inhomogeneous expression:

R = [ 1 − 2 ( q 2 2 + q 3 2 ) 2 ( q 1 q 2 − q 0 q 3 ) 2 ( q 0 q 2 + q 1 q 3 ) 2 ( q 1 q 2 + q 0 q 3 ) 1 − 2 ( q 1 2 + q 3 2 ) 2 ( q 2 q 3 − q 0 q 1 ) 2 ( q 1 q 3 − q 0 q 2 ) 2 ( q 0 q 1 + q 2 q 3 ) 1 − 2 ( q 1 2 + q 2 2 ) ] {\displaystyle R={\begin{bmatrix}1-2(q_{2}^{2}+q_{3}^{2})&2(q_{1}q_{2}-q_{0}q_{3})&2(q_{0}q_{2}+q_{1}q_{3})\\2(q_{1}q_{2}+q_{0}q_{3})&1-2(q_{1}^{2}+q_{3}^{2})&2(q_{2}q_{3}-q_{0}q_{1})\\2(q_{1}q_{3}-q_{0}q_{2})&2(q_{0}q_{1}+q_{2}q_{3})&1-2(q_{1}^{2}+q_{2}^{2})\end{bmatrix}}} {\displaystyle R={\begin{bmatrix}1-2(q_{2}^{2}+q_{3}^{2})&2(q_{1}q_{2}-q_{0}q_{3})&2(q_{0}q_{2}+q_{1}q_{3})\\2(q_{1}q_{2}+q_{0}q_{3})&1-2(q_{1}^{2}+q_{3}^{2})&2(q_{2}q_{3}-q_{0}q_{1})\\2(q_{1}q_{3}-q_{0}q_{2})&2(q_{0}q_{1}+q_{2}q_{3})&1-2(q_{1}^{2}+q_{2}^{2})\end{bmatrix}}}

or equivalently, by the homogeneous expression:

R = [ q 0 2 + q 1 2 − q 2 2 − q 3 2 2 ( q 1 q 2 − q 0 q 3 ) 2 ( q 0 q 2 + q 1 q 3 ) 2 ( q 1 q 2 + q 0 q 3 ) q 0 2 − q 1 2 + q 2 2 − q 3 2 2 ( q 2 q 3 − q 0 q 1 ) 2 ( q 1 q 3 − q 0 q 2 ) 2 ( q 0 q 1 + q 2 q 3 ) q 0 2 − q 1 2 − q 2 2 + q 3 2 ] {\displaystyle R={\begin{bmatrix}q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}&2(q_{1}q_{2}-q_{0}q_{3})&2(q_{0}q_{2}+q_{1}q_{3})\\2(q_{1}q_{2}+q_{0}q_{3})&q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}&2(q_{2}q_{3}-q_{0}q_{1})\\2(q_{1}q_{3}-q_{0}q_{2})&2(q_{0}q_{1}+q_{2}q_{3})&q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\end{bmatrix}}} {\displaystyle R={\begin{bmatrix}q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}&2(q_{1}q_{2}-q_{0}q_{3})&2(q_{0}q_{2}+q_{1}q_{3})\\2(q_{1}q_{2}+q_{0}q_{3})&q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2}&2(q_{2}q_{3}-q_{0}q_{1})\\2(q_{1}q_{3}-q_{0}q_{2})&2(q_{0}q_{1}+q_{2}q_{3})&q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}\end{bmatrix}}}

If q 0 + i q 1 + j q 2 + k q 3 {\displaystyle q_{0}+iq_{1}+jq_{2}+kq_{3}} q_{0}+iq_{1}+jq_{2}+kq_{3} is not a unit quaternion then the homogeneous form is still a scalar multiple of a rotation matrix, while the inhomogeneous form is in general no longer an orthogonal matrix. This is why in numerical work the homogeneous form is to be preferred if distortion is to be avoided.

The direction cosine matrix (from the rotated Body XYZ coordinates to the original Lab xyz coordinates for a clockwise/lefthand rotation) corresponding to a post-multiply Body 3-2-1 sequence with Euler angles (ψ, θ, φ) is given by:[2]

[ x y z ] = R z ( ψ ) R y ( θ ) R x ( ϕ ) [ X Y Z ] = [ cos ⁡ ψ − sin ⁡ ψ 0 sin ⁡ ψ cos ⁡ ψ 0 0 0 1 ] [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] [ 1 0 0 0 cos ⁡ ϕ − sin ⁡ ϕ 0 sin ⁡ ϕ cos ⁡ ϕ ] [ X Y Z ] = [ cos ⁡ θ cos ⁡ ψ − cos ⁡ ϕ sin ⁡ ψ + sin ⁡ ϕ sin ⁡ θ cos ⁡ ψ sin ⁡ ϕ sin ⁡ ψ + cos ⁡ ϕ sin ⁡ θ cos ⁡ ψ cos ⁡ θ sin ⁡ ψ cos ⁡ ϕ cos ⁡ ψ + sin ⁡ ϕ sin ⁡ θ sin ⁡ ψ − sin ⁡ ϕ cos ⁡ ψ + cos ⁡ ϕ sin ⁡ θ sin ⁡ ψ − sin ⁡ θ sin ⁡ ϕ cos ⁡ θ cos ⁡ ϕ cos ⁡ θ ] [ X Y Z ] {\displaystyle {\begin{aligned}{\begin{bmatrix}x\\y\\z\\\end{bmatrix}}&=R_{z}(\psi )R_{y}(\theta )R_{x}(\phi ){\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\&={\begin{bmatrix}\cos \psi &-\sin \psi &0\\\sin \psi &\cos \psi &0\\0&0&1\\\end{bmatrix}}{\begin{bmatrix}\cos \theta &0&\sin \theta \\0&1&0\\-\sin \theta &0&\cos \theta \\\end{bmatrix}}{\begin{bmatrix}1&0&0\\0&\cos \phi &-\sin \phi \\0&\sin \phi &\cos \phi \\\end{bmatrix}}{\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\&={\begin{bmatrix}\cos \theta \cos \psi &-\cos \phi \sin \psi +\sin \phi \sin \theta \cos \psi &\sin \phi \sin \psi +\cos \phi \sin \theta \cos \psi \\\cos \theta \sin \psi &\cos \phi \cos \psi +\sin \phi \sin \theta \sin \psi &-\sin \phi \cos \psi +\cos \phi \sin \theta \sin \psi \\-\sin \theta &\sin \phi \cos \theta &\cos \phi \cos \theta \\\end{bmatrix}}{\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\\end{aligned}}} {\displaystyle {\begin{aligned}{\begin{bmatrix}x\\y\\z\\\end{bmatrix}}&=R_{z}(\psi )R_{y}(\theta )R_{x}(\phi ){\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\&={\begin{bmatrix}\cos \psi &-\sin \psi &0\\\sin \psi &\cos \psi &0\\0&0&1\\\end{bmatrix}}{\begin{bmatrix}\cos \theta &0&\sin \theta \\0&1&0\\-\sin \theta &0&\cos \theta \\\end{bmatrix}}{\begin{bmatrix}1&0&0\\0&\cos \phi &-\sin \phi \\0&\sin \phi &\cos \phi \\\end{bmatrix}}{\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\&={\begin{bmatrix}\cos \theta \cos \psi &-\cos \phi \sin \psi +\sin \phi \sin \theta \cos \psi &\sin \phi \sin \psi +\cos \phi \sin \theta \cos \psi \\\cos \theta \sin \psi &\cos \phi \cos \psi +\sin \phi \sin \theta \sin \psi &-\sin \phi \cos \psi +\cos \phi \sin \theta \sin \psi \\-\sin \theta &\sin \phi \cos \theta &\cos \phi \cos \theta \\\end{bmatrix}}{\begin{bmatrix}X\\Y\\Z\\\end{bmatrix}}\\\end{aligned}}}
Euler angles for Body 3-1-3 Sequence – The xyz (original fixed Lab) system is shown in blue, the XYZ (rotated final Body) system is shown in red. The line of nodes, labelled N and shown in green, is the intermediate Body X-axis around which the second rotation occurs.

Euler Angles to Quaternion Conversion[edit]

By combining the quaternion representations of the Euler rotations we get for the Body 3-2-1 sequence, where the airplane first does yaw (Body-Z) turn during taxiing onto the runway, then pitches (Body-Y) during take-off, and finally rolls (Body-X) in the air. The resulting orientation of Body 3-2-1 sequence (around the capitalized axis in the illustration of Tait–Bryan angles) is equivalent to that of lab 1-2-3 sequence (around the lower-cased axis), where the airplane is rolled first (lab-x axis), and then nosed up around the horizontal lab-y axis, and finally rotated around the vertical lab-z axis (lB = lab2Body):

q l B = [ cos ⁡ ( ψ / 2 ) 0 0 sin ⁡ ( ψ / 2 ) ] [ cos ⁡ ( θ / 2 ) 0 sin ⁡ ( θ / 2 ) 0 ] [ cos ⁡ ( ϕ / 2 ) sin ⁡ ( ϕ / 2 ) 0 0 ] = [ cos ⁡ ( ϕ / 2 ) cos ⁡ ( θ / 2 ) cos ⁡ ( ψ / 2 ) + sin ⁡ ( ϕ / 2 ) sin ⁡ ( θ / 2 ) sin ⁡ ( ψ / 2 ) sin ⁡ ( ϕ / 2 ) cos ⁡ ( θ / 2 ) cos ⁡ ( ψ / 2 ) − cos ⁡ ( ϕ / 2 ) sin ⁡ ( θ / 2 ) sin ⁡ ( ψ / 2 ) cos ⁡ ( ϕ / 2 ) sin ⁡ ( θ / 2 ) cos ⁡ ( ψ / 2 ) + sin ⁡ ( ϕ / 2 ) cos ⁡ ( θ / 2 ) sin ⁡ ( ψ / 2 ) cos ⁡ ( ϕ / 2 ) cos ⁡ ( θ / 2 ) sin ⁡ ( ψ / 2 ) − sin ⁡ ( ϕ / 2 ) sin ⁡ ( θ / 2 ) cos ⁡ ( ψ / 2 ) ] {\displaystyle {\begin{aligned}\mathbf {q_{lB}} &={\begin{bmatrix}\cos(\psi /2)\\0\\0\\\sin(\psi /2)\\\end{bmatrix}}{\begin{bmatrix}\cos(\theta /2)\\0\\\sin(\theta /2)\\0\\\end{bmatrix}}{\begin{bmatrix}\cos(\phi /2)\\\sin(\phi /2)\\0\\0\\\end{bmatrix}}\\&={\begin{bmatrix}\cos(\phi /2)\cos(\theta /2)\cos(\psi /2)+\sin(\phi /2)\sin(\theta /2)\sin(\psi /2)\\\sin(\phi /2)\cos(\theta /2)\cos(\psi /2)-\cos(\phi /2)\sin(\theta /2)\sin(\psi /2)\\\cos(\phi /2)\sin(\theta /2)\cos(\psi /2)+\sin(\phi /2)\cos(\theta /2)\sin(\psi /2)\\\cos(\phi /2)\cos(\theta /2)\sin(\psi /2)-\sin(\phi /2)\sin(\theta /2)\cos(\psi /2)\\\end{bmatrix}}\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {q_{lB}} &={\begin{bmatrix}\cos(\psi /2)\\0\\0\\\sin(\psi /2)\\\end{bmatrix}}{\begin{bmatrix}\cos(\theta /2)\\0\\\sin(\theta /2)\\0\\\end{bmatrix}}{\begin{bmatrix}\cos(\phi /2)\\\sin(\phi /2)\\0\\0\\\end{bmatrix}}\\&={\begin{bmatrix}\cos(\phi /2)\cos(\theta /2)\cos(\psi /2)+\sin(\phi /2)\sin(\theta /2)\sin(\psi /2)\\\sin(\phi /2)\cos(\theta /2)\cos(\psi /2)-\cos(\phi /2)\sin(\theta /2)\sin(\psi /2)\\\cos(\phi /2)\sin(\theta /2)\cos(\psi /2)+\sin(\phi /2)\cos(\theta /2)\sin(\psi /2)\\\cos(\phi /2)\cos(\theta /2)\sin(\psi /2)-\sin(\phi /2)\sin(\theta /2)\cos(\psi /2)\\\end{bmatrix}}\\\end{aligned}}}

Other rotation sequences use different conventions.[2]

Source Code[edit]

Below code in C++ illustrates above conversion:

Quaterniond toQuaternion(double pitch, double roll, double yaw)
{
	Quaterniond q;
        // Abbreviations for the various angular functions
	double cy = cos(yaw * 0.5);
	double sy = sin(yaw * 0.5);
	double cr = cos(roll * 0.5);
	double sr = sin(roll * 0.5);
	double cp = cos(pitch * 0.5);
	double sp = sin(pitch * 0.5);

	q.w() = cy * cr * cp + sy * sr * sp;
	q.x() = cy * sr * cp - sy * cr * sp;
	q.y() = cy * cr * sp + sy * sr * cp;
	q.z() = sy * cr * cp - cy * sr * sp;
	return q;
}

Quaternion to Euler Angles Conversion[edit]

The Euler angles can be obtained from the quaternions via the relations:[3]

[ ϕ θ ψ ] = [ arctan 2 ( q 0 q 1 + q 2 q 3 ) 1 − 2 ( q 1 2 + q 2 2 ) arcsin ( 2 ( q 0 q 2 − q 3 q 1 ) ) arctan 2 ( q 0 q 3 + q 1 q 2 ) 1 − 2 ( q 2 2 + q 3 2 ) ] {\displaystyle {\begin{bmatrix}\phi \\\theta \\\psi \end{bmatrix}}={\begin{bmatrix}{\mbox{arctan}}{\frac {2(q_{0}q_{1}+q_{2}q_{3})}{1-2(q_{1}^{2}+q_{2}^{2})}}\\{\mbox{arcsin}}(2(q_{0}q_{2}-q_{3}q_{1}))\\{\mbox{arctan}}{\frac {2(q_{0}q_{3}+q_{1}q_{2})}{1-2(q_{2}^{2}+q_{3}^{2})}}\end{bmatrix}}} {\begin{bmatrix}\phi \\\theta \\\psi \end{bmatrix}}={\begin{bmatrix}{\mbox{arctan}}{\frac {2(q_{0}q_{1}+q_{2}q_{3})}{1-2(q_{1}^{2}+q_{2}^{2})}}\\{\mbox{arcsin}}(2(q_{0}q_{2}-q_{3}q_{1}))\\{\mbox{arctan}}{\frac {2(q_{0}q_{3}+q_{1}q_{2})}{1-2(q_{2}^{2}+q_{3}^{2})}}\end{bmatrix}}

Note, however, that the arctan and arcsin functions implemented in computer languages only produce results between −π/2 and π/2, and for three rotations between −π/2 and π/2 one does not obtain all possible orientations. To generate all the orientations one needs to replace the arctan functions in computer code by atan2:

[ ϕ θ ψ ] = [ atan2 ( 2 ( q 0 q 1 + q 2 q 3 ) , 1 − 2 ( q 1 2 + q 2 2 ) ) asin ( 2 ( q 0 q 2 − q 3 q 1 ) ) atan2 ( 2 ( q 0 q 3 + q 1 q 2 ) , 1 − 2 ( q 2 2 + q 3 2 ) ) ] {\displaystyle {\begin{bmatrix}\phi \\\theta \\\psi \end{bmatrix}}={\begin{bmatrix}{\mbox{atan2}}(2(q_{0}q_{1}+q_{2}q_{3}),1-2(q_{1}^{2}+q_{2}^{2}))\\{\mbox{asin}}(2(q_{0}q_{2}-q_{3}q_{1}))\\{\mbox{atan2}}(2(q_{0}q_{3}+q_{1}q_{2}),1-2(q_{2}^{2}+q_{3}^{2}))\end{bmatrix}}} {\displaystyle {\begin{bmatrix}\phi \\\theta \\\psi \end{bmatrix}}={\begin{bmatrix}{\mbox{atan2}}(2(q_{0}q_{1}+q_{2}q_{3}),1-2(q_{1}^{2}+q_{2}^{2}))\\{\mbox{asin}}(2(q_{0}q_{2}-q_{3}q_{1}))\\{\mbox{atan2}}(2(q_{0}q_{3}+q_{1}q_{2}),1-2(q_{2}^{2}+q_{3}^{2}))\end{bmatrix}}}

Source Code[edit]

The following C++ program illustrates conversion above:

static void toEulerAngle(const Quaterniond& q, double& roll, double& pitch, double& yaw)
{
	// roll (x-axis rotation)
	double sinr = +2.0 * (q.w() * q.x() + q.y() * q.z());
	double cosr = +1.0 - 2.0 * (q.x() * q.x() + q.y() * q.y());
	roll = atan2(sinr, cosr);

	// pitch (y-axis rotation)
	double sinp = +2.0 * (q.w() * q.y() - q.z() * q.x());
	if (fabs(sinp) >= 1)
		pitch = copysign(M_PI / 2, sinp); // use 90 degrees if out of range
	else
		pitch = asin(sinp);

	// yaw (z-axis rotation)
	double siny = +2.0 * (q.w() * q.z() + q.x() * q.y());
	double cosy = +1.0 - 2.0 * (q.y() * q.y() + q.z() * q.z());  
	yaw = atan2(siny, cosy);
}

The following Python program illustrates conversion above:

import math

def quaternion_to_euler_angle(w, x, y, z):
	ysqr = y * y
	
	t0 = +2.0 * (w * x + y * z)
	t1 = +1.0 - 2.0 * (x * x + ysqr)
	X = math.degrees(math.atan2(t0, t1))
	
	t2 = +2.0 * (w * y - z * x)
	t2 = +1.0 if t2 > +1.0 else t2
	t2 = -1.0 if t2 < -1.0 else t2
	Y = math.degrees(math.asin(t2))
	
	t3 = +2.0 * (w * z + x * y)
	t4 = +1.0 - 2.0 * (ysqr + z * z)
	Z = math.degrees(math.atan2(t3, t4))
	
	return X, Y, Z

Singularities[edit]

One must be aware of singularities in the Euler angle parametrization when the pitch approaches ±90° (north/south pole). These cases must be handled specially. The common name for this situation is gimbal lock.

Code to handle the singularities is derived on this site: www.euclideanspace.com

Vector Rotation[edit]

Note that the canonical way to rotate a three-dimensional vector v → {\displaystyle {\vec {v}}} {\vec {v}} by a quaternion q {\displaystyle q} q defining an Euler rotation is via the formula

p ′ = q p q ∗ {\displaystyle \mathbf {p} ^{\,\prime }=\mathbf {qpq} ^{\ast }} {\displaystyle \mathbf {p} ^{\,\prime }=\mathbf {qpq} ^{\ast }}

where p = ( 0 , v → ) = 0 + i v 1 + j v 2 + k v 3 {\displaystyle \mathbf {p} =(0,{\vec {v}})=0+iv_{1}+jv_{2}+kv_{3}} {\displaystyle \mathbf {p} =(0,{\vec {v}})=0+iv_{1}+jv_{2}+kv_{3}} is a quaternion containing the embedded vector v → {\displaystyle {\vec {v}}} {\vec {v}}, q ∗ {\displaystyle q^{\ast }} {\displaystyle q^{\ast }} is a conjugate quaternion, and p ′ = ( 0 , v → ′ ) {\displaystyle \mathbf {p} ^{\,\prime }=(0,{\vec {v}}^{\,\prime })} {\displaystyle \mathbf {p} ^{\,\prime }=(0,{\vec {v}}^{\,\prime })} is the rotated vector v → ′ {\displaystyle {\vec {v}}^{\,\prime }} {\displaystyle {\vec {v}}^{\,\prime }}. In computational implementations this requires two quaternion multiplications. An alternative approach is to apply the pair of relations

t → = 2 q → × v → {\displaystyle {\vec {t}}=2{\vec {q}}\times {\vec {v}}} {\displaystyle {\vec {t}}=2{\vec {q}}\times {\vec {v}}}
v → ′ = v → + q 0 t → + q → × t → {\displaystyle {\vec {v}}^{\,\prime }={\vec {v}}+q_{0}{\vec {t}}+{\vec {q}}\times {\vec {t}}} {\displaystyle {\vec {v}}^{\,\prime }={\vec {v}}+q_{0}{\vec {t}}+{\vec {q}}\times {\vec {t}}}

where × {\displaystyle \times } \times indicates a three-dimensional vector cross product. This involves fewer multiplications and is therefore computationally faster. Numerical tests indicate this latter approach may be up to 30% [4] faster than the original for vector rotation.

Proof[edit]

The general rule for quaternion multiplication involving scalar and vector parts is given by

q 1 q 2 = ( r 1 , v → 1 ) ( r 2 , v → 2 ) = ( r 1 r 2 − v → 1 ⋅ v → 2 , r 1 v → 2 + r 2 v → 1 + v → 1 × v → 2 ) {\displaystyle {\begin{aligned}\mathbf {q_{1}q_{2}} &=(r_{1},{\vec {v}}_{1})(r_{2},{\vec {v}}_{2})\\&=(r_{1}r_{2}-{\vec {v}}_{1}\cdot {\vec {v}}_{2},r_{1}{\vec {v}}_{2}+r_{2}{\vec {v}}_{1}+{\vec {v}}_{1}\times {\vec {v}}_{2})\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {q_{1}q_{2}} &=(r_{1},{\vec {v}}_{1})(r_{2},{\vec {v}}_{2})\\&=(r_{1}r_{2}-{\vec {v}}_{1}\cdot {\vec {v}}_{2},r_{1}{\vec {v}}_{2}+r_{2}{\vec {v}}_{1}+{\vec {v}}_{1}\times {\vec {v}}_{2})\\\end{aligned}}}

Using this relation one finds for p = ( 0 , v → ) {\displaystyle \mathbf {p} =(0,{\vec {v}})} {\displaystyle \mathbf {p} =(0,{\vec {v}})} that

p q ∗ = ( 0 , v → ) ( q 0 , − q → ) = ( v → ⋅ q → , q 0 v → − v → × q → ) {\displaystyle {\begin{aligned}\mathbf {pq^{\ast }} &=(0,{\vec {v}})(q_{0},-{\vec {q}})\\&=({\vec {v}}\cdot {\vec {q}},q_{0}{\vec {v}}-{\vec {v}}\times {\vec {q}})\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {pq^{\ast }} &=(0,{\vec {v}})(q_{0},-{\vec {q}})\\&=({\vec {v}}\cdot {\vec {q}},q_{0}{\vec {v}}-{\vec {v}}\times {\vec {q}})\\\end{aligned}}}

and upon substitution for the triple product

q p q ∗ = ( q 0 , q → ) ( v → ⋅ q → , q 0 v → − v → × q → ) = ( 0 , q 0 2 v → + q 0 q → × v → + ( v → ⋅ q → ) q → + q 0 q → × v → + q → × ( q → × v → ) ) {\displaystyle {\begin{aligned}\mathbf {qpq^{\ast }} &=(q_{0},{\vec {q}})({\vec {v}}\cdot {\vec {q}},q_{0}{\vec {v}}-{\vec {v}}\times {\vec {q}})\\&=(0,q_{0}^{2}{\vec {v}}+q_{0}{\vec {q}}\times {\vec {v}}+({\vec {v}}\cdot {\vec {q}}){\vec {q}}+q_{0}{\vec {q}}\times {\vec {v}}+{\vec {q}}\times ({\vec {q}}\times {\vec {v}}))\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {qpq^{\ast }} &=(q_{0},{\vec {q}})({\vec {v}}\cdot {\vec {q}},q_{0}{\vec {v}}-{\vec {v}}\times {\vec {q}})\\&=(0,q_{0}^{2}{\vec {v}}+q_{0}{\vec {q}}\times {\vec {v}}+({\vec {v}}\cdot {\vec {q}}){\vec {q}}+q_{0}{\vec {q}}\times {\vec {v}}+{\vec {q}}\times ({\vec {q}}\times {\vec {v}}))\\\end{aligned}}}

where anti-commutivity of cross product and q → ⋅ v → × q → = 0 {\displaystyle {\vec {q}}\cdot {\vec {v}}\times {\vec {q}}=0} {\displaystyle {\vec {q}}\cdot {\vec {v}}\times {\vec {q}}=0} has been applied. By next exploiting the property that q {\displaystyle \mathbf {q} } \mathbf {q} is a unit quaternion so that q 0 2 = 1 − q → ⋅ q → {\displaystyle q_{0}^{2}=1-{\vec {q}}\cdot {\vec {q}}} {\displaystyle q_{0}^{2}=1-{\vec {q}}\cdot {\vec {q}}}, along with the standard vector identity

q → × ( q → × v → ) = ( q → ⋅ v → ) q → − ( q → ⋅ q → ) v → {\displaystyle {\vec {q}}\times ({\vec {q}}\times {\vec {v}})=({\vec {q}}\cdot {\vec {v}}){\vec {q}}-({\vec {q}}\cdot {\vec {q}}){\vec {v}}} {\displaystyle {\vec {q}}\times ({\vec {q}}\times {\vec {v}})=({\vec {q}}\cdot {\vec {v}}){\vec {q}}-({\vec {q}}\cdot {\vec {q}}){\vec {v}}}

one obtains

p ′ = q p q ∗ = ( 0 , v → + 2 q 0 q → × v → + 2 q → × ( q → × v → ) ) {\displaystyle {\begin{aligned}\mathbf {p} ^{\prime }&=\mathbf {qpq^{\ast }} =(0,{\vec {v}}+2q_{0}{\vec {q}}\times {\vec {v}}+2{\vec {q}}\times ({\vec {q}}\times {\vec {v}}))\\\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {p} ^{\prime }&=\mathbf {qpq^{\ast }} =(0,{\vec {v}}+2q_{0}{\vec {q}}\times {\vec {v}}+2{\vec {q}}\times ({\vec {q}}\times {\vec {v}}))\\\end{aligned}}}

which upon defining t → = 2 q → × v → {\displaystyle {\vec {t}}=2{\vec {q}}\times {\vec {v}}} {\displaystyle {\vec {t}}=2{\vec {q}}\times {\vec {v}}} can be written in terms of scalar and vector parts as

( 0 , v → ′ ) = ( 0 , v → + q 0 t → + q → × t → ) . {\displaystyle (0,{\vec {v}}^{\,\prime })=(0,{\vec {v}}+q_{0}{\vec {t}}+{\vec {q}}\times {\vec {t}}).} {\displaystyle (0,{\vec {v}}^{\,\prime })=(0,{\vec {v}}+q_{0}{\vec {t}}+{\vec {q}}\times {\vec {t}}).}

See also[edit]

References[edit]

  1. Jump up ^ W. G. Breckenridge, "Quaternions proposed standard conventions," NASA Jet Propulsion Laboratory, Technical Report, Oct. 1979.
  2. ^ Jump up to: a b NASA Mission Planning and Analysis Division. "Euler Angles, Quaternions, and Transformation Matrices" (PDF). NASA. Retrieved 12 January 2013. 
  3. Jump up ^ Blanco, Jose-Luis (2010). "A tutorial on se (3) transformation parameterizations and on-manifold optimization". University of Malaga, Tech. Rep. 
  4. Jump up ^ Janota, A; Šimák, V; Nemec, D; Hrbček, J (2015). "Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data". Sensors. 15 (3): 7016–7039. doi:10.3390/s150307016. PMC 4435132Freely accessible. 

External links[edit]

&amp;lt;img src=&quot;//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&quot; alt=&quot;&quot; title=&quot;&quot; width=&quot;1&quot; height=&quot;1&quot; style=&quot;border: none; position: absolute;&quot; /&amp;gt;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值