线性最小二乘问题
线性最小二乘是一种求解线性系统参数的方法,即参数估计的方法。它的特点有:
- 需要已知参数与观察量之间的线性函数关系
- 存在多余观测
线性最小二乘原理
线性关系
对于一个参数估计问题,我们往往不能直接获得想要的参数值,需要通过间接观测的方式去反向求解。
例如:
- 为了确定一辆车的平均速度,我们不能直接测量得到,我们是间接的借助单位时间内的路程,以及时间来反算速度。
- 为了获得我在世界上的GPS位置,我们总是间接的借助卫星的位置,以及卫星到我们的距离来推算我们当前的位置。
可以看到很多很多问题不是我们可以直接测量的,再例如,我们想知道一个相机它的焦距,畸变参数,我们难以直接拿仪器测量,我们总是建立我们想要求解的参数X与我们易于观测量Y之间的函数关系:
F
(
X
)
=
Y
F(X) = Y
F(X)=Y
通过已知的Y和已知的函数关系f(x),反推出X的值。
当我们的已知这个函数关系是线性的时候,我们可以简化为:
A
X
=
Y
AX = Y
AX=Y
其中A是参数X与观测Y之间的线性函数关系(线性运算(乘和加)可以由矩阵A表示)。
因此,为了求解我们想要的参数,我们已知观测Y和线性关系A,就可以求解待求参数X啦。
理解多余观测
当我们有了线性关系,在测量足够的情况下,我们就可以求解出参数X。
如:求解一个条直线的参数k和b:
A X = Y AX = Y AX=Y
[ y 0 y 1 ] = [ x 0 1 x 1 1 ] ∗ [ k b ] \begin{bmatrix} y_0 \\ y_1 \\ \end{bmatrix} = \begin{bmatrix}x_0 & 1 \\ x_1 & 1\\ \end{bmatrix} * \begin{bmatrix} k \\ b \\ \end{bmatrix} [y0y1]=[x0x111]∗[kb]
其中
X
对
应
[
k
b
]
X对应\begin{bmatrix} k \\ b \\ \end{bmatrix}
X对应[kb]
A
对
应
[
x
0
1
x
1
1
]
A对应\begin{bmatrix}x_0 & 1 \\ x_1 & 1\\ \end{bmatrix}
A对应[x0x111]
Y
对
应
[
y
0
y
1
]
Y对应\begin{bmatrix} y_0 \\ y_1 \\ \end{bmatrix}
Y对应[y0y1]
当然我们知道只需要两组x和y就可以通过矩阵求逆求出k和b了,X = A-1*Y。但这未免也太简陋了,如果我们有3组,4组甚至10组x,y,我们该怎么求解k,b呢?如果我们使用给用更多组的x,y我们求得的k和b是不是更加准确。
我们将“除了能唯一确定某个几何或物理模型的t个必要观测之外的其余观测值”称为多余观测。针对上述问题,多余两组的x,y都是多余观测。
当存在多余观测时,我们就不能像之前那样对矩阵A求逆了,那怎么求更准确的k和b呢?
这时候我们就可以借助最小二乘来求解存在多余观测的问题。
理解残差
在我们利用最小二乘来求解存在多余观测的问题之前,我们先介绍残差,它能更好的帮助我们理解最小二乘的原理。
接着上面的例子将,当我存在多组x,y时,它们并不会乖乖的向我们设想那样,总在一条直线上,它们可能是这种形式:
即近似的成一条直线,为啥出现近似而非一定呢,这个时候我们就需要介绍更一般(泛)的概念了,我们必须假设我们的到的观测是一个随机变量,例如,(你每次拿勺子喝汤,你能够保证每次摇到的汤重量一致吗,你只能把这个过程建模成一个随机过程,即每一次摇到的汤或多或少,它们呈现某种分布,例如高斯分布),对于上述问题也是一样,我们得到的x和y,可能并不一定服从某个k和b,而是大致服从某个k和b。也就是上述图形。由于随机误差的存在,我们可能永远不能得到准确的k,b。但我们可以基于已有的所有数据(包括多余观测)算出一个最优的,最能符合观测的k,b。这才是我们想要求得的
为了求得所谓的最优,我们先介绍残差的概念。
残差的公式可简写为:
V
=
A
X
−
Y
V = AX - Y
V=AX−Y
在理想情况下:
0
=
A
X
−
Y
0 = AX - Y
0=AX−Y
但在实际情况中,AX - Y并不等于0,我们定义另一个量V,来代表我们AX估计出的
Y
^
\hat Y
Y^值与观测值Y之前的差。我们将它画在图上:
不能发现,观测量到其拟合直线之间的y值之差的绝对值,就是残差V的几何意义。
最小二乘的“最优”准则
在我们了解了残差V的几何意义之后,我们不难想象,如果令V最小,就可以确定一条较为准确的直线,如果令
∣
∣
V
∣
∣
2
||V||_2
∣∣V∣∣2即
V
2
V^2
V2,最小,我们也可以确定一条较为准确的直线。我们将令
V
2
V^2
V2最小作为求解准则的方法,称为最小二乘法(也很好理解,残差的二乘(平方)最小的方法–最小二乘法)。
我们这里介绍的最小二乘,可能看起来比较粗暴,有人会问为啥就不能使用|V|最小作为最优原则呢?
其实最小二乘是符合统计意义上的“最优”的,当我们假设观测量Y(随机变量)是正态分布时,为满足其成正太分布的条件,那它必须满足
V
T
V
V^TV
VTV最小。(即最小二乘估计与极大似然估计等价,详情见:https://blog.csdn.net/u013344884/article/details/79483705)
这时你可能有些模糊了,为了绕开晦涩的概念,你可以简单理解:
我们理论假设是观测值的残差是正太分布的。
为了让残差呈现正太分布,我们只需让
V
T
V
V^TV
VTV最小即可确保残差是呈现正太分布的。
因此,我们可以求使得
V
T
V
V^TV
VTV最小的参数,为符合最小二乘的最优参数。
最小二乘求解
方法1:求解法方程
线性方程组
A
x
=
b
Ax=b
Ax=b的最小二乘问题一定有解,且求解最小二乘问题与求解线性方程组的法方程组等价。
推导:
V
=
A
X
−
Y
V = AX - Y
V=AX−Y
a
r
g
m
i
n
V
T
V
argmin V^TV
argminVTV
则
∂
V
T
V
∂
X
=
0
\frac{\partial^{}V^TV}{\partial X} =0
∂X∂VTV=0
(
A
A
A为超定矩阵,
A
T
A
A^TA
ATA是方阵)
由二次凸优化的理论可知,当
A
T
A
A^TA
ATA正定 (
A
T
A
A^TA
ATA(可逆),正定一定可逆,可逆不一定正定)时,
V
T
V
V^TV
VTV与参数X组成的函数是凸函数,存在全局最小值,其最小值在
V
T
V
V^TV
VTV对X求偏导等于0处。(即
V
T
V
V^TV
VTV组成二次型(y=
X
T
A
X
X^TAX
XTAX+2βX+c),如果A正定,那么y一定是凸函数,见https://wenku.baidu.com/view/fde33592a76e58fafab003a2.html)
二次凸函数:
对于线性最小二乘,只要 A T A A^TA ATA没有秩亏现象,(没有线性相关的情况)那线性最小二乘一定满足二次凸的性质(即其最小值在 V T V V^TV VTV对X求偏导等于0处)
∂
V
T
V
∂
X
=
2
V
T
A
=
2
(
A
X
−
Y
)
T
A
=
0
\frac{\partial^{}V^TV}{\partial X} =2V^TA=2(AX-Y)^TA=0
∂X∂VTV=2VTA=2(AX−Y)TA=0
则:
A
T
(
A
X
−
Y
)
=
0
A^T(AX-Y)=0
AT(AX−Y)=0
A
T
A
X
−
A
T
Y
=
0
A^TAX-A^TY=0
ATAX−ATY=0
X
=
(
A
T
A
)
−
A
T
Y
X = (A^TA)^-A^TY
X=(ATA)−ATY
当
A
T
A
A^TA
ATA正定 1 (
A
T
A
A^TA
ATA(可逆))时,X的最小二乘估计值就是
(
A
T
A
)
−
A
T
Y
(A^TA)^-A^TY
(ATA)−ATY
这样我们就得到了最小二乘的解
用法方程组来求解最小二乘法可能会引出好多问题,我们提倡用QR分解来求解。
数值求法:QR分解
参考:https://blog.csdn.net/LCCFlccf/article/details/84875534
https://www.cnblogs.com/caimagic/p/12202884.html
将求解
X
=
(
A
T
A
)
−
A
T
Y
X = (A^TA)^-A^TY
X=(ATA)−ATY的问题转化成求解矩阵A的QR分解矩阵的问题。
最终
X
=
R
−
Q
T
Y
X = R^-Q^TY
X=R−QTY
方法2:梯度下降
既然线性最小二乘问题是一个二次凸问题,那它一定是凸函数,这时候,梯度下降法就完全适合,通过迭代xi+1 = ▽+xi的方式,也可以求得一个非常好的解。
方法3:线性回归
线性回归也是通过迭代的方式一步步逼近参数最优值,它与梯度下降方式不同在于,梯度下降法的每一次迭代使用到了所有的观测,对所有观测一直迭代,直到最优,而线性回归根据现有观测,分批迭代,甚至是一个观测一个观测的迭代。
直接求逆的造成的损失是QR分解平方倍,见:
https://blog.csdn.net/weixin_46581517/article/details/105178304
只要A的列向量线性无关,则 A T A A^TA ATA正定则 A T A A^TA ATA可逆,见https://zhuanlan.zhihu.com/p/84223081 ↩︎