1999美元!RTX5090发布

来源:EETOP

1月7日,英伟达在2025年CES 并发布了RTX 50系列GPU。英伟达首先发布了RTX 5070 GPU,售价仅549美元。据英伟达称,该GPU将通过多种方式利用AI技术,提供RTX 4090级别的性能,但价格仅为后者的三分之一。此外,移动版RTX 5070的功耗仅为RTX 4090的一半,从而在笔记本电脑上实现更高的性能水平。

ef3e83d289a241e7c4d4fbac87206a90.png

c76b28f28f920aa3886fb1fe85190d43.png

b1121ee7d938bc99227012c786b2daa8.png

(图片来源:英伟达)

此次发布的50系列产品线还包括作为这一代旗舰产品的RTX 5090,售价高达1999美元,提供3400 AI TOPS的性能。RTX 5080则以更具吸引力的999美元价格,提供1800 TOPS的AI性能,略高于RTX 5090性能的一半,并继承了即将退市的RTX 4080 Super的价格。接下来是RTX 5070 Ti,售价749美元,提供1400 TOPS;最后是RTX 5070,以已提及的549美元价格,提供1000 TOPS。

02adffc86956cb7c12fa5412100df34d.png

根据公布的AI TOPS性能,首先显而易见的是,英伟达相对于Ada Lovelace架构,在INT8工作负载上至少将AI计算运算量翻了一番。

这些并非随意猜测。即使确切的核心数量和时钟速度可能略有偏差,但所述的计算水平应该是可行的。英伟达表示,RTX Blackwell通过着色器提供125 TFLOPS的FP32图形计算能力,是Ada代产品的1.5倍,而AI性能将是其3倍。因此,相对于着色器性能的AI性能已经翻倍。

我们尚不清楚Blackwell中使用的第五代张量核心是否能将其他数字格式的吞吐量翻倍。考虑到这些GPU的多用途应用场景——它们将用于游戏显卡,当然,也包括专业GPU和数据中心AI解决方案——我们推测张量核心的所有方面都得到了升级。

有趣的是,如果我们插入时钟速度和传闻中的核心数量,就可以更好地了解最终规格。125 TFLOPS的数据还伴随着最高4000 INT8 TOPS的性能,而RTX 5090则将其缩减至3400 TOPS。因此,125 TFLOPS的数据代表了一个假设的完全启用的Blackwell芯片,而RTX 5090将仅部分启用。这是合理的。

目前的传闻称,GB202最多拥有192个SM(流式多处理器),而RTX 5090将仅启用170个。据此计算,RTX 5090将提供约107 TFLOPS的着色器计算能力,以及3400 TOPS。但1.8 TB/s的带宽数据与先前传闻的28 Gbps GDDR7内存运行在512位内存接口上完全吻合。

英伟达在其所有游戏GPU上将AI计算能力翻倍后,会做些什么呢?自然,它计划推出新的功能和软件解决方案来充分利用这些能力。RTX 5070提供1000 TOPS的计算能力,性能几乎与RTX 4090相当,但价格仅为后者的三分之一,这为计算要求更高的任务打开了大门。

最有可能的应用场景之一是基于AI的纹理压缩。我们之前听说过这项技术,其概念已在上一代硬件上演示过……但帧率并不极高。2023年5月的神经纹理压缩(Neural Texture Compression, NTC)的运行速度不到标准BTC(块截断编码)压缩速度的一半。但18个月后,随着AI计算能力的提升和更多训练,我们完全有可能实现NTC与传统BTC相同的运行速度。

鉴于我们和其他人对现代游戏中GPU显存不足的担忧,NTC成为Blackwell一代硬件的主要新功能之一也就不足为奇了。如果得到应用,NTC能在显存使用量减少三分之一的情况下提供更高的图像质量,甚至可能让8GB显存的显卡更加可行。只是存在一个小问题:许多游戏是跨平台作品,运行在由AMD GPU驱动的游戏主机上。

如果英伟达的新纹理压缩技术需要至少一张RTX显卡,那么会有多少游戏支持这项技术呢?而如果该技术需要RTX 50系列显卡,那么支持的游戏数量将会更少。但英伟达有足够的影响力以AMD和英特尔无法做到的方式推动游戏市场的发展。

这会是传闻中的DLSS 4,即神经渲染图形吗?还是会有其他什么新技术?英伟达尚未公布,但显然NTC至少会在某种程度上归属于DLSS系列。

除了桌面GPU,英伟达还公布了移动产品线的名称。将有对应的RTX 5090、5080、5070 Ti和5070笔记本电脑,预计于2025年3月上市。虽然型号名称与桌面系列相匹配,但性能将显著降低,我们预计其他规格也会有所缩减。

RTX 5090笔记本GPU将提供1850 AI TOPS,起价2899美元。这意味着其性能基本与桌面版RTX 5080相当。移动版5080降至1350 AI TOPS,略低于桌面版5070 Ti。移动版5070 Ti将与桌面版5070一样提供1000 TOPS,而普通版5070笔记本GPU将提供高达800 AI TOPS——这可能是即将推出的桌面版RTX 5060 Ti的预告。

 
 

11eb4c20b64cf4737d3320210e67fd45.jpeg

 
 
 
 
 
 
 
 
 
 
 
 
往期精彩回顾




写了一本适合本科生的机器学习入门书适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑
  • 交流群

请备注:”昵称-学校/公司-研究方向“,例如:”张小明-浙大-CV“加群。

也可以加入机器学习交流qq群772479961)

96d9b77bc16196075b5935a36697d2e0.png

<think>好的,我现在要解决用户在RTX 5090D显卡上安装CUDA 12.8失败的问题。首先,我需要根据用户提供的引用信息来分析可能的原因和解决方案。 根据引用[1],用户提到高版本的系统驱动可能向下兼容低版本的CUDA工具包,但CUDA 12.0和11.8之间存在大版本差异,可能导致不兼容。现在用户的问题是CUDA 12.8安装失败,可能同样存在驱动版本不兼容的问题。RTX 5090D是比较新的显卡,可能需要最新的驱动程序支持。因此,我应该建议用户检查NVIDIA驱动版本是否符合CUDA 12.8的要求,并更新到最新驱动。 引用[2]提到包依赖冲突可能导致安装失败。CUDA安装过程中依赖的软件包版本如果不匹配,可能会出现问题。用户需要确保系统中的所有依赖项都满足CUDA 12.8的要求,或者使用conda环境来管理依赖,避免冲突。另外,参考NVIDIA的官方安装指南和驱动下载也很重要。 引用[3]中的解决方案是直接下载对应版本的.whl文件进行安装,但用户可能希望更彻底的解决方法。如果依赖问题严重,可能需要使用虚拟环境隔离,或者通过conda安装特定版本的CUDA工具包,确保与其他库的兼容性。 引用[4]中的例子是修改代码中的参数来解决兼容性问题,但CUDA安装问题可能需要不同的方法。不过,这说明用户可能在开发环境中调整配置,可能需要特定的环境设置。 综合以上信息,可能的解决方案步骤包括: 1. 确认NVIDIA驱动版本是否支持CUDA 12.8,并更新到最新驱动。 2. 检查CUDA 12.8的系统要求,确保操作系统和其他依赖项符合条件。 3. 使用conda创建独立环境安装CUDA 12.8,避免全局依赖冲突。 4. 清理之前的安装残留,使用官方安装程序重新安装。 5. 如果问题依旧,查看日志文件确定具体错误,针对性地解决。 另外,用户可能需要参考官方文档或社区支持来获取更详细的指导,例如检查安装日志中的错误代码,对应解决依赖或配置问题。</think>针对RTX 5090D显卡上CUDA 12.8安装失败的问题,以下是分步解决方案: --- ### **1. 检查NVIDIA驱动兼容性** - **问题根源**:CUDA 12.8需要特定版本的NVIDIA驱动支持。若驱动版本过低或与显卡型号不兼容,安装会失败[^1][^2]。 - **操作步骤**: 1. 访问[NVIDIA驱动下载页面](https://www.nvidia.com/Download/index.aspx),输入RTX 5090D显卡型号,查询并下载**最新版驱动**。 2. 卸载旧驱动(Windows使用DDU工具,Linux使用`nvidia-uninstall`命令)。 3. 安装新驱动后重启系统。 --- ### **2. 验证系统环境兼容性** - **关键点**:CUDA 12.8对操作系统和开发工具有特定要求。例如: - Windows需Windows 10/11 21H2或更高版本。 - Linux需GCC 9.x及以上、内核版本5.x及以上。 - **操作步骤**: - Windows:通过`winver`命令检查系统版本。 - Linux:运行`gcc --version`和`uname -r`查看GCC和内核版本。 --- ### **3. 使用Conda隔离环境(推荐)** - **优势**:通过Anaconda/Miniconda创建独立环境,避免全局依赖冲突[^3]。 - **操作步骤**: ```bash # 创建新环境 conda create -n cuda12.8 python=3.10 conda activate cuda12.8 # 安装CUDA工具包 conda install -c nvidia cuda-toolkit=12.8 ``` --- ### **4. 清理残留文件后重装** - **场景**:若之前安装失败导致残留文件干扰新安装。 - **操作步骤**: 1. 运行官方CUDA安装包时选择`Custom`模式,勾选`Clean Install`。 2. 手动删除残留文件(如`/usr/local/cuda*`或`C:\Program Files\NVIDIA GPU Computing Toolkit`)。 --- ### **5. 分析日志定位具体错误** - **方法**:CUDA安装日志通常位于: - Windows:`C:\Program Files\NVIDIA Corporation\CUDA Samples\install_log.txt` - Linux:`/var/log/cuda-installer.log` - **常见错误处理**: - **依赖缺失**:根据日志提示安装缺失的库(如Linux下`libssl-dev`)。 - **权限问题**:使用管理员权限运行安装程序。 --- ### **6. 其他替代方案** - **直接安装预编译包**:从[NVIDIA CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive)下载对应系统的CUDA 12.8安装包。 - **容器化部署**:使用Docker镜像`nvidia/cuda:12.8.0-base`直接运行支持CUDA的环境。 --- ### **相关问题** 1. 如何验证CUDA 12.8是否安装成功? 2. RTX 5090D显卡是否支持混合精度计算? 3. CUDA 12.8与PyTorch/TensorFlow的兼容性如何? --- 通过以上步骤,可系统性解决CUDA 12.8安装问题。若仍失败,建议在NVIDIA开发者论坛或GitHub提交日志以获取针对性支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值