0010期基于深度学习对眼睛识别-含数据集和代码

该博客介绍了如何使用Python和PyTorch进行深度学习的眼睛识别项目。内容包括数据集预处理,如图片尺寸调整和角度旋转,训练模型的步骤,以及通过PyQT创建的可视化UI界面,方便用户上传图片进行识别。此外,提供了完整的代码资源和日志记录,便于读者理解和复现实验。
摘要由CSDN通过智能技术生成

代码是基于python pytorch环境安装的。

下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境

数据集介绍,下载本资源后,界面如下:

数据集文件夹存放了本次识别的各个类别图片。

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,

运行01数据集文本制作.py文件,会就读取数据集下每个类别文件中的图片路径和对应的标签

运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地

训练完成之后会有log日志保存本地,里面记录了每个epoch的验证集损失值和准确率。

运行03pyqt_ui界面.py就可以有个可视化的ui界面,通过点击按钮可以加载自己感兴趣的图片识别。

下载代码和视频演示地址:

0010期基于深度学习对眼睛识别_哔哩哔哩_bilibili

 

欢迎下载更多深度学习资源:

以下含完整代码,包括ui界面,视频演示即为代码内容。

代码仓库和视频演示地址:https://space.bilibili.com/1747287365

包含:

001手写汉字识别-单个汉字识别-pyqt可视化交互界面-python代码

002unet墙体瑕疵检测-python-pytorch

003水果识别小程序-python-pytorch-mobilenet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值